Lesson 7: Managing Storage Space

Monitoring storage usage in a Database Management System (DBMS) is a critical task
for database administrators. It involves tracking the allocation and consumption of disk
space by database objects to ensure optimal performance, prevent storage-related
issues, and plan for future growth. Effective monitoring helps in making informed
decisions about adding, resizing, and relocating data files, as well as managing
temporary and undo tablespaces.

Monitoring storage usage is essential for several reasons. First, it helps in identifying
potential storage shortages before they become critical, preventing disruptions in
database operations. Second, it provides insights into the growth patterns of database
objects, enabling proactive space management. Third, it aids in optimizing performance
by ensuring that sufficient space is available for efficient data processing and retrieval.
Finally, regular monitoring supports capacity planning, helping administrators anticipate
and plan for future storage needs.

Several techniques can be employed to monitor storage usage effectively. One of the
primary methods is using database views and reports. Most DBMSs provide system
views and built-in reports that offer detailed information about storage usage. For
example, in Oracle, views like DBA_DATA_FILES, DBA_FREE_SPACE, and
DBA_SEGMENTS can be queried to monitor space usage. A query like SELECT
tablespace_name, SUM(bytes)/1024/1024 AS total_space_mb, SUM(bytes -
NVL(free_space, 0))/1024/1024 AS used_space_mb, SUM(free_space)/1024/1024
AS free_space_mb FROM (SELECT tablespace_name, bytes, bytes -
NVL(free_space, 0) AS free_space FROM dba_data_files) GROUP BY
tablespace_name; provides a summary of total, used, and free space in each
tablespace.

Automated alerts and thresholds are also crucial tools for monitoring storage usage.
Many DBMSs allow administrators to set up automated alerts that trigger when storage
usage reaches predefined thresholds. These alerts can notify administrators of potential
issues, allowing for timely intervention. Additionally, performance monitoring tools offer
real-time insights into storage usage. These specialized tools provide dashboards,
visualizations, and detailed reports that help in tracking and managing storage more
effectively. Periodic audits and reviews of storage usage are also important, as they
help maintain an up-to-date understanding of how storage is being utilized. This process
can involve reviewing usage patterns, identifying underutilized or overutilized storage,
and making necessary adjustments.

Temporary and undo tablespaces require particular attention in storage monitoring due
to their roles in managing transient and transactional data, respectively. Temporary
tablespaces store temporary data generated during operations such as sorting and
hashing. Monitoring their usage involves tracking the size and usage of tempfiles,
ensuring they have enough space to handle complex queries and operations without
running into space issues. For example, to monitor the usage of temporary tablespaces
in Oracle, a query like SELECT tablespace_name, SUM(blocks*8192)/1024/1024 AS
used_space_mb FROM v$tempseg_usage GROUP BY tablespace_name; can be
used.

Undo tablespaces store undo data, which is crucial for transaction management,
providing read consistency, and enabling rollback operations. Monitoring undo
tablespaces involves ensuring that sufficient space is allocated to handle the undo
requirements of the database workload. It is also important to monitor the undo
retention settings to balance between providing adequate undo data and optimizing
space usage. For example, to monitor undo tablespace usage in Oracle, a query like
SELECT tablespace_name, SUM(bytes)/1024/1024 AS used_space_mb FROM
dba_undo_extents GROUP BY tablespace_name; can be used.

Best practices for monitoring storage usage include setting regular monitoring intervals,
utilizing automation, establishing thresholds and alerts, analyzing growth patterns, and
performing regular maintenance. Establishing regular intervals for monitoring storage
usage, such as daily or weekly checks, helps administrators stay informed about space
utilization trends. Leveraging automated tools and scripts to regularly collect and report
on storage usage reduces manual effort and ensures timely data. Defining thresholds
for storage usage and setting up alerts to notify administrators when these thresholds
are approached or exceeded is crucial. Regularly analyzing the growth patterns of
database objects helps anticipate future storage needs and make proactive
adjustments. Performing regular maintenance tasks, such as resizing datafiles, adding
new storage, and reorganizing tablespaces, ensures efficient storage utilization.

In conclusion, monitoring storage usage is a vital component of managing a DBMS. By
keeping a close watch on how storage is utilized, database administrators can ensure
that their databases operate smoothly, efficiently, and without unexpected interruptions.
Employing a combination of database views, automated alerts, performance monitoring
tools, and regular audits helps maintain an optimal storage environment, supporting the
overall health and performance of the database system.

Automatic Storage Management (ASM)

Automatic Storage Management (ASM) is a feature provided by Oracle Database
designed to simplify the management of database storage. ASM handles the complexity
of managing storage by automating tasks related to disk and file management, which
enhances performance and reduces administrative overhead. It offers a unified storage
solution capable of managing both database and non-database files, providing an
efficient and scalable storage infrastructure.

One of the key features of ASM is its ability to automate many tasks that traditionally
require manual intervention by database administrators. ASM eliminates the need for
manual file system management, such as creating and resizing datafiles, by
automatically managing the storage space. This automation reduces the administrative
burden and minimizes the potential for human error, making storage management more
efficient and reliable.

ASM employs striping and mirroring to enhance performance and data protection.
Striping distributes data evenly across all available disks, balancing the I/O load and
improving performance by speeding up read and write operations. Mirroring provides
data redundancy, protecting against disk failures. ASM supports different levels of
mirroring, including normal redundancy with two-way mirroring and high redundancy
with three-way mirroring, ensuring robust data protection.

A significant advantage of ASM is its dynamic rebalancing feature, which automatically
redistributes data across disks when disks are added or removed from the ASM disk
group. This rebalancing operation occurs in the background, ensuring continuous
database operation without requiring downtime. Dynamic rebalancing helps maintain
optimal performance and efficient storage utilization by adapting to changes in the
storage configuration seamlessly.

ASM manages storage using disk groups, which are collections of disks managed as a
single unit. When a disk group is created, ASM handles the allocation of data across the
disks in the group. This simplifies the organization of storage resources and provides a
logical structure for managing disks. Administrators can create, modify, and drop disk
groups as needed, making it easy to scale storage up or down based on requirements.

Creating an ASM disk group involves specifying the name of the disk group, the
redundancy level, and the disks included in the group. For example, in Oracle, the
command CREATE DISKGROUP data NORMAL REDUNDANCY DISK ‘/dev/sd1’,
'Idev/sd2', '/dev/sd3'; creates an ASM disk group named data with normal redundancy,
using the specified disks. Managing ASM disk groups includes tasks such as adding or

removing disks, resizing disk groups, and monitoring disk group usage. For instance,
adding a new disk to an existing ASM disk group can be accomplished with the
command ALTER DISKGROUP data ADD DISK ‘/dev/sd4';, which integrates the new
disk into the data disk group and triggers automatic rebalancing.

Monitoring ASM disk groups is crucial for ensuring optimal performance and storage
utilization. Oracle provides several views and tools for this purpose. For example,
querying the VSASM_DISKGROUP view with SELECT name, total_mb, free_mb,
usable_file_mb, offline_disks FROM v$asm_diskgroup; provides information about
the disk group name, total size, free space, usable file space, and the number of offline
disks. This information helps administrators effectively monitor and manage ASM disk
groups, ensuring that the storage infrastructure operates efficiently.

ASM offers numerous benefits that enhance the efficiency and reliability of database
storage management. By automating routine tasks and providing advanced features like
striping, mirroring, and dynamic rebalancing, ASM significantly reduces the complexity
and administrative overhead associated with storage management. Its ability to manage
both database and non-database files within a unified framework further simplifies
storage operations. ASM also enhances performance through efficient data distribution
and improves data protection with robust redundancy options, making it an invaluable
tool for organizations seeking to streamline their storage management processes and
ensure the high availability and performance of their Oracle databases.

Automatic Storage Management (ASM) is a powerful feature that simplifies and
enhances the management of storage in Oracle databases. By automating complex
storage tasks, providing advanced features like striping and mirroring, and ensuring
dynamic rebalancing, ASM significantly reduces administrative overhead and improves
performance. With its robust management capabilities and ease of use, ASM is an
essential tool for database administrators looking to optimize their storage infrastructure
and ensure the efficient operation of their databases.

Reclaiming unused space (shrink, compress)

Reclaiming unused space in a Database Management System (DBMS) is essential for
maintaining optimal performance and efficient use of storage resources. Over time,
databases can accumulate unused space due to deleted records, outdated data, and
other factors. This unused space can lead to wasted storage and degraded

performance if not managed properly. Two primary methods for reclaiming this space
are shrinking and compressing database objects.

Shrinking involves reducing the size of database objects, such as tables and indexes,
by reclaiming unused space. This process can improve performance by reducing the
amount of space the database needs to scan during queries and other operations.
Shrinking is particularly useful in environments where data is frequently deleted or
updated. To shrink a table in Oracle, the ALTER TABLE ... SHRINK SPACE command
is used, which compacts the table by moving rows closer together and adjusting the
high-water mark to reflect the end of the used space in the table. For example, ALTER
TABLE example_table SHRINK SPACE; compacts the example_table by reclaiming
unused space. Similarly, indexes can be shrunk using the ALTER INDEX ... SHRINK
SPACE command, such as ALTER INDEX example_index SHRINK SPACE;, which
compacts the specified index and frees up unnecessary space.

Compression reduces the amount of storage required by database objects by using
various algorithms to compact data. Compressing data can significantly reduce storage
costs and improve performance, especially for large databases with a high volume of
data. Oracle provides several compression options, including Advanced Compression
and Hybrid Columnar Compression, each suited for different data types and usage
patterns. To compress a table in Oracle, the ALTER TABLE ... COMPRESS command
is used. For example, ALTER TABLE example_table COMPRESS FOR OLTP;
enables compression optimized for Online Transaction Processing (OLTP)
environments, reducing storage costs while maintaining performance. Compression can
also be applied during data loading operations, such as with the CREATE TABLE ... AS
SELECT statement. For instance, CREATE TABLE compressed_table COMPRESS
FOR OLTP AS SELECT * FROM example_table; creates a new compressed table
compressed_table populated with data from example_table.

Regular maintenance is crucial for reclaiming unused space through shrinking and
compressing database objects. Performing these operations periodically ensures that
unused space is reclaimed consistently. Monitoring space usage using database views
and monitoring tools helps identify objects with significant unused space. Automating
shrinking and compression tasks using scheduled jobs ensures these operations are
performed regularly and consistently. Before applying shrink and compression
operations in a production environment, it is essential to test them in a staging
environment to ensure they do not adversely affect performance. It is also important to
balance the trade-offs between performance and storage savings when choosing
compression options, as higher compression levels can impact performance.

In conclusion, reclaiming unused space through shrinking and compressing database
objects is crucial for maintaining an efficient and high-performing database. Regularly
performing these operations ensures optimal use of storage resources, reducing costs
and improving overall system performance. Employing best practices such as regular
maintenance, monitoring space usage, and automating tasks helps in managing storage
effectively and keeping the database environment healthy.

Partitioning strategies for large datasets

Partitioning is a crucial strategy for managing large datasets in a database. By dividing
a large table into smaller, more manageable pieces called partitions, you can improve
performance, simplify maintenance, and enhance the scalability of the database.
Different partitioning strategies cater to various use cases and data distribution patterns.
Here are some common partitioning strategies and their benefits.

Range Partitioning

Range partitioning involves dividing a table into partitions based on a specified range of
values. This method is particularly effective for time-series data or any dataset with a
natural range-based key, such as dates or numerical sequences. For example, a sales
table can be partitioned by month or year, making it easier to manage and query data
for specific time periods.

sales (
sale_id NUMBER,
sale_date R

amount NUMBER

(sale_date) (

sales _q1l LESS THAN (TO_DATE(
sales_q2 LESS THAN (TO_DATE(
sales_qg3 LESS THAN (TO_DATE(
sales g4 LESS THAN (TO_DATE(

In this example, the sales table is partitioned into four quarters based on the sale_date
column.

Hash Partitioning

Hash partitioning distributes data evenly across partitions using a hash function. This
method is suitable for scenarios where uniform data distribution is desired, and there is
no natural range-based key. Hash partitioning helps in balancing the load and improving
query performance by ensuring that data is evenly distributed.

users (
user_id NUMBER,
user_name VARCHAR2(50),

registration_date

HASH (user_id) (

Here, the users table is partitioned using the user_id column, and the data is evenly
distributed across four partitions.

List Partitioning

List partitioning involves dividing a table into partitions based on a predefined list of
values. This strategy is useful when you have a set of discrete values that can be
grouped together logically. For example, you might partition a table based on regions or
product categories.

employees (
employee id NUMBER,
employee name VARCHAR2(509),
department VARCHAR2(50)

LIST (department) (
sales (

hr)>
it),

finance (

In this example, the employees table is partitioned by the department column, with
each department having its own partition.

Composite Partitioning

Composite partitioning combines two or more partitioning methods, such as range-hash
or range-list partitioning. This approach provides greater flexibility and can address
more complex data distribution requirements. For instance, you might first partition data
by range and then further sub-partition by hash within each range partition.

orders (

order_id NUMBER,
order_date R
customer_id NUMBER

(order_date)
SUBPARTITION HASH (customer_id) (
p2022 LESS THAN (TO_DATE(
SUBPARTITION p2022_1,
SUBPARTITION p2022_2

p2023 LESS THAN (TO_DATE(
SUBPARTITION p2023_1,
SUBPARTITION p2023_2

This example partitions the orders table by year (order_date) and then further
sub-partitions each year by customer_id using hash partitioning.

Interval Partitioning

Interval partitioning is an extension of range partitioning that automatically creates new
partitions as data arrives. This method is ideal for handling continuous data streams
without the need for manual partition management.

transactions (
transaction_id NUMBER,
transaction_date R

amount NUMBER

(transaction_date)
(NUMTOYMINTERVAL(1,)) (
p_initial LESS THAN (TO_DATE(

In this example, the transactions table initially contains a partition for data before
January 2022. As new data arrives, Oracle automatically creates monthly partitions.

Benefits of Partitioning

Partitioning large datasets provides several benefits, including improved query
performance, easier management of large tables, enhanced scalability, and efficient use
of resources. By reducing the amount of data scanned during queries, partitioning
speeds up data retrieval and processing. It also simplifies tasks like backups, archiving,
and purging old data, making database maintenance more manageable.

Best Practices for Partitioning

e Analyze Data Distribution: Choose a partitioning strategy based on the natural
distribution and access patterns of your data.

e Monitor Performance: Regularly monitor the performance of your partitions to
ensure they continue to meet your requirements.

e Use Composite Partitioning Wisely: Combine multiple partitioning methods if
your data and query patterns are complex.

e Automate Management: Use interval partitioning or other automated methods
to reduce manual intervention for managing partitions.

In conclusion, partitioning is a powerful strategy for managing large datasets, offering
significant benefits in terms of performance, scalability, and ease of maintenance. By
selecting the appropriate partitioning method based on your data's characteristics and
access patterns, you can optimize your database for better efficiency and manageability.

