
Lesson 6: Tablespaces and Datafiles
A tablespace is a storage location where the actual data underlying database objects
can be stored. In a Database Management System (DBMS), tablespaces are used to
allocate storage and manage the physical layout of the database. They help in
organizing data, optimizing performance, and ensuring efficient use of disk space.
Tablespaces are important because of different reasons:

● Data Organization: Tablespaces allow for the logical grouping of related objects,
which helps in efficient data management and retrieval.

● Performance Optimization: By distributing data across multiple tablespaces, you
can reduce contention and improve the performance of database operations.

● Space Management: Tablespaces enable better control over the allocation and
usage of disk space, making it easier to manage large databases.

● Backup and Recovery: Tablespaces facilitate easier backup and recovery
processes by allowing you to backup and restore specific parts of the database.

Creating Tablespaces
Creating a tablespace involves defining its name, size, and the data files associated
with it. Here's a general approach to creating a tablespace in a DBMS like Oracle:

● Define the Tablespace Name: Choose a meaningful name for the tablespace.
● Specify Data Files: Define the location and size of the data files that will store the

tablespace's data.
● Set Parameters: Specify additional parameters such as extent management,

segment space management, and logging.

Example SQL for Creating a Tablespace in Oracle:



Managing Tablespaces
Managing tablespaces involves several tasks, including monitoring space usage,
resizing tablespaces, and performing maintenance operations.

1. Monitoring Space Usage
Regular monitoring of tablespace usage helps prevent issues related to space shortage
and ensures optimal performance. This can be done using various DBMS tools and
commands.

Example SQL for Monitoring Tablespace Usage in Oracle:

2. Resizing Tablespaces
As the database grows, you may need to increase the size of tablespaces to
accommodate more data. This can be done by adding new data files or resizing existing
ones.

Example SQL for Adding a Data File to a Tablespace in Oracle:



Example SQL for Resizing a Data File in Oracle:

3. Maintenance Operations
Periodic maintenance operations are essential for ensuring the health and performance
of tablespaces. These operations include:

1. Reorganizing Tablespaces: Defragmenting tablespaces to improve performance.
2. Moving Tablespaces: Relocating tablespaces to different storage devices to

balance load or optimize performance.
3. Dropping Tablespaces: Removing tablespaces that are no longer needed.

Example SQL for Dropping a Tablespace in Oracle:

Datafile management
Datafile management is a crucial aspect of database administration that involves
ensuring the efficient use of storage, optimizing performance, and accommodating data
growth. This process includes adding new datafiles, resizing existing ones, and
relocating datafiles to different storage locations. Each of these operations plays a
significant role in maintaining the health and efficiency of a Database Management
System (DBMS).

Adding Datafiles
As databases grow, the need for additional storage becomes inevitable. Adding
datafiles to a tablespace is a primary method for accommodating this growth. When a



tablespace's existing datafiles approach their capacity limits, adding a new datafile
ensures that the database can continue to store new data without interruption.

To add a datafile, first identify the tablespace that requires additional storage. Next, you
need to specify the location, name, and size of the new datafile. For instance, in Oracle,
the following SQL command adds a new datafile to a tablespace:

In this example, example_ts is the name of the tablespace, example_ts_data2.dbf is
the name of the new datafile, and SIZE 100M specifies that the new datafile will have an
initial size of 100 megabytes. This process allows the tablespace to handle more data
by allocating additional disk space as needed.

Resizing Datafiles
Resizing datafiles is necessary when the storage requirements of a database change,
either due to growth or optimization needs. This operation involves increasing or
decreasing the size of an existing datafile to better manage disk space. Resizing helps
in efficiently utilizing storage resources and can prevent potential performance issues
that arise from space shortages.

To resize a datafile, you first need to identify which datafile requires resizing. Once
identified, you can specify the new size for the datafile. For example, in Oracle, the SQL
command to resize a datafile is as follows:

In this command, example_ts_data.dbf is the name of the datafile being resized, and
RESIZE 200M indicates that the datafile should be resized to 200 megabytes. This
operation is particularly useful when you need to manage storage more effectively or
when anticipating future data growth.



Relocating Datafiles
Relocating datafiles involves moving them from one storage location to another. This
might be necessary for various reasons, such as balancing I/O load across different
storage devices, moving datafiles to higher-performing disks, or freeing up space on a
particular device. The relocation process requires careful planning and execution to
avoid data loss and ensure database integrity.

The first step in relocating a datafile is to take the relevant tablespace offline. This
ensures that no data is accessed or modified during the relocation process. In Oracle,
this can be done using the following SQL command:

Once the tablespace is offline, you can physically move the datafile to the new location
using operating system commands. For instance, on a Unix-based system, the
command might look like this:

After moving the datafile, you must update the database to reflect the new location of
the datafile. This is done using the SQL command:

ALTER DATABASE RENAME FILE '/old_path/example_ts_data.dbf' TO
'/new_path/example_ts_data.dbf';

Finally, bring the tablespace back online with the command:

This sequence of commands ensures that the datafile is moved safely and that the
database is aware of its new location, maintaining database operations without
disruption.



Best Practices for Datafile Management
Effective datafile management involves regular monitoring, proactive planning, and
careful execution of maintenance tasks. Regularly checking the usage of datafiles helps
anticipate when additional space is needed, preventing performance issues related to
space shortages. Proactive planning for growth involves adding datafiles or resizing
existing ones before reaching critical capacity limits.

Performing maintenance operations, such as resizing or relocating datafiles, during
periods of low database activity minimizes the impact on users and ensures smoother
execution. Additionally, having a recent backup before performing significant datafile
operations is crucial to prevent data loss and facilitate recovery in case of any issues.

Datafile management is essential for the efficient and effective operation of a DBMS. By
understanding and implementing practices for adding, resizing, and relocating datafiles,
database administrators can ensure their databases can handle growth, optimize
performance, and make efficient use of storage resources. Regular monitoring,
proactive maintenance, and careful planning are key to successful datafile
management, ultimately contributing to the overall health and performance of the
database system.

Temporary tablespaces and undo tablespaces
Datafile management is a crucial aspect of database administration that involves
ensuring the efficient use of storage, optimizing performance, and accommodating data
growth. This process includes adding new datafiles, resizing existing ones, and
relocating datafiles to different storage locations. Each of these operations plays a
significant role in maintaining the health and efficiency of a Database Management
System (DBMS).

As databases grow, the need for additional storage becomes inevitable. Adding
datafiles to a tablespace is a primary method for accommodating this growth. When a
tablespace's existing datafiles approach their capacity limits, adding a new datafile
ensures that the database can continue to store new data without interruption. To add a
datafile, first identify the tablespace that requires additional storage. Next, you need to
specify the location, name, and size of the new datafile. For instance, in Oracle, the
following SQL command adds a new datafile to a tablespace: ALTER TABLESPACE
example_ts ADD DATAFILE 'example_ts_data2.dbf' SIZE 100M;. In this example,
example_ts is the name of the tablespace, example_ts_data2.dbf is the name of the



new datafile, and SIZE 100M specifies that the new datafile will have an initial size of
100 megabytes. This process allows the tablespace to handle more data by allocating
additional disk space as needed.

Resizing datafiles is necessary when the storage requirements of a database change,
either due to growth or optimization needs. This operation involves increasing or
decreasing the size of an existing datafile to better manage disk space. Resizing helps
in efficiently utilizing storage resources and can prevent potential performance issues
that arise from space shortages. To resize a datafile, you first need to identify which
datafile requires resizing. Once identified, you can specify the new size for the datafile.
For example, in Oracle, the SQL command to resize a datafile is as follows: ALTER
DATABASE DATAFILE 'example_ts_data.dbf' RESIZE 200M;. In this command,
example_ts_data.dbf is the name of the datafile being resized, and RESIZE 200M
indicates that the datafile should be resized to 200 megabytes. This operation is
particularly useful when you need to manage storage more effectively or when
anticipating future data growth.

Relocating datafiles involves moving them from one storage location to another. This
might be necessary for various reasons, such as balancing I/O load across different
storage devices, moving datafiles to higher-performing disks, or freeing up space on a
particular device. The relocation process requires careful planning and execution to
avoid data loss and ensure database integrity. The first step in relocating a datafile is to
take the relevant tablespace offline. This ensures that no data is accessed or modified
during the relocation process. In Oracle, this can be done using the following SQL
command: ALTER TABLESPACE example_ts OFFLINE;. Once the tablespace is
offline, you can physically move the datafile to the new location using operating system
commands. For instance, on a Unix-based system, the command might look like this:
mv /old_path/example_ts_data.dbf /new_path/example_ts_data.dbf. After moving
the datafile, you must update the database to reflect the new location of the datafile.
This is done using the SQL command: ALTER DATABASE RENAME FILE
'/old_path/example_ts_data.dbf' TO '/new_path/example_ts_data.dbf';. Finally,
bring the tablespace back online with the command: ALTER TABLESPACE
example_ts ONLINE;. This sequence of commands ensures that the datafile is moved
safely and that the database is aware of its new location, maintaining database
operations without disruption.

In addition to managing datafiles, database administrators must also manage temporary
and undo tablespaces. Temporary tablespaces are used to store temporary data
generated during database operations such as sorting, hashing, and large result set
manipulations. Unlike permanent tablespaces, temporary tablespaces are not used to



store persistent user data. Instead, they provide a workspace for the database to handle
intermediate results and operations that do not need to be permanently stored. Creating
a temporary tablespace involves defining its name, specifying the location and size of its
datafiles, and setting appropriate parameters. Temporary tablespaces typically use
TEMPFILEs rather than DATAFILEs, as TEMPFILEs are more efficient for handling
temporary data. An example SQL command to create a temporary tablespace in Oracle
is: CREATE TEMPORARY TABLESPACE temp_ts TEMPFILE 'temp_ts_file1.dbf'
SIZE 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M;. Managing
temporary tablespaces includes monitoring space usage, adding tempfiles, and resizing
existing tempfiles to handle increased temporary data demands. Regular monitoring
and maintenance of temporary tablespaces ensure that the database can handle
complex queries and operations efficiently without running into space issues.

Undo tablespaces are essential for managing undo data, which is used to roll back
transactions, provide read consistency, and recover the database to a consistent state
after a failure. Undo tablespaces store the before-images of data that has been modified
by transactions, allowing the DBMS to undo changes if necessary. Creating an undo
tablespace involves specifying its name, location, size, and other parameters that
control how undo data is managed. Proper sizing and configuration are crucial to ensure
that the undo tablespace can handle the workload of the database, especially in
environments with high transaction volumes. An example SQL command to create an
undo tablespace in Oracle is: CREATE UNDO TABLESPACE undo_ts DATAFILE
'undo_ts_file1.dbf' SIZE 200M AUTOEXTEND ON NEXT 50M MAXSIZE
UNLIMITED;. Managing undo tablespaces involves monitoring space usage, adjusting
the size of datafiles, and tuning undo retention settings to balance between providing
sufficient undo data and optimizing space usage. Regular maintenance tasks, such as
adding or resizing files, help keep the tablespaces optimized for performance.

In conclusion, datafile management is essential for the efficient and effective operation
of a DBMS. By understanding and implementing practices for adding, resizing, and
relocating datafiles, along with managing temporary and undo tablespaces, database
administrators can ensure their databases can handle growth, optimize performance,
and make efficient use of storage resources. Regular monitoring, proactive
maintenance, and careful planning are key to successful datafile management,
ultimately contributing to the overall health and performance of the database system.



Storage parameters and extent management
Storage parameters and extent management are fundamental aspects of database
management that significantly influence the performance, scalability, and efficiency of
data storage in a Database Management System (DBMS). Understanding these
concepts is essential for database administrators to optimize storage and manage
database growth effectively.

Storage parameters are settings that control how data is stored in the database. These
parameters can be specified at various levels, such as tablespaces, tables, indexes,
and other database objects. Key storage parameters include initial size, next size,
minimum and maximum extents, and percentage increase. For example, the INITIAL
parameter specifies the size of the first extent allocated when a database object is
created, ensuring sufficient space is allocated initially to avoid frequent allocation
operations. The NEXT parameter defines the size of the subsequent extents needed
when more space is required, helping maintain consistent performance. MINEXTENTS
sets the minimum number of extents allocated at the time of object creation, ensuring a
base level of storage reserved for performance tuning. MAXEXTENTS specifies the
maximum number of extents that can be allocated for an object, preventing a single
object from consuming all available space. The PCTINCREASE parameter indicates the
percentage by which each subsequent extent size will increase, helping control the rate
of growth of the database object. Configuring these storage parameters allows
database administrators to optimize space allocation and improve database operation
performance.

Extent management refers to how the DBMS handles the allocation and deallocation of
extents, which are contiguous blocks of storage space allocated to database objects like
tables or indexes. There are two main types of extent management: dictionary-managed
and locally managed. In dictionary-managed tablespaces (DMT), extent allocation
and deallocation information is stored in the data dictionary tables, which can lead to
contention and fragmentation issues as the data dictionary tables become a bottleneck.
For example, a SQL command to create a dictionary-managed tablespace in Oracle is:
CREATE TABLESPACE example_ts DATAFILE 'example_ts_data.dbf' SIZE 100M
EXTENT MANAGEMENT DICTIONARY;.

On the other hand, locally managed tablespaces (LMT) manage extent allocation
within the tablespace itself using bitmaps to track free and allocated extents. This
method reduces contention and improves performance by avoiding the overhead of
data dictionary updates. For example, creating a locally managed tablespace with
uniform extent sizes in Oracle can be done with: CREATE TABLESPACE example_ts
DATAFILE 'example_ts_data.dbf' SIZE 100M EXTENT MANAGEMENT LOCAL



UNIFORM SIZE 1M;. Locally managed tablespaces can also use autoallocate, where
the system automatically manages extent sizes based on usage patterns, which can be
beneficial for databases with varying storage needs. An example command for this is:
CREATE TABLESPACE example_ts DATAFILE 'example_ts_data.dbf' SIZE 100M
EXTENT MANAGEMENT LOCAL AUTOALLOCATE;.

Best practices for storage parameters and extent management include using locally
managed tablespaces over dictionary-managed ones to reduce contention and improve
performance. It's also important to choose appropriate extent sizes based on the
expected growth and usage patterns of database objects, as uniform extent sizes can
simplify management and enhance performance. Regular monitoring of space usage
ensures that storage remains optimized and performance issues are promptly
addressed. Through careful configuration and management of storage parameters and
extents, database administrators can ensure efficient use of storage resources and
maintain high performance in their database systems.


