
Lesson 11: Transactions and Flashback Technology

Transaction Management and Concurrency Control
Transaction management and concurrency control are fundamental components of
database systems, ensuring that multiple transactions can execute concurrently without
compromising data integrity and consistency. Transactions in a database are sequences
of operations performed as a single logical unit of work, and the ACID
properties—Atomicity, Consistency, Isolation, and Durability—define the key
characteristics of a reliable transaction. Atomicity ensures that all operations within a
transaction are completed successfully or none at all, rolling back the entire transaction
if any part fails. Consistency ensures that a transaction transforms the database from
one valid state to another, maintaining database invariants through constraints, triggers,
and rules. Isolation ensures that transactions are executed independently and
concurrently without interfering with each other, preventing concurrent transactions from
affecting each other's intermediate states. Durability ensures that once a transaction is
committed, its changes are permanent and survive system failures, typically achieved
through write-ahead logging and other recovery mechanisms.

Isolation levels define the degree to which the operations in one transaction are isolated
from those in other concurrent transactions. SQL databases typically support multiple
isolation levels, each offering a trade-off between concurrency and consistency. The
Read Uncommitted level, the lowest isolation level, allows transactions to read
uncommitted changes made by other transactions, offering high concurrency but risking
dirty reads. Read Committed ensures that transactions can only read committed
changes made by other transactions, preventing dirty reads but allowing non-repeatable
reads. Repeatable Read ensures that if a transaction reads a row, subsequent reads of
the same row will return the same data, preventing dirty reads and non-repeatable
reads but allowing phantom reads. Serializable, the highest isolation level, ensures full
isolation from other transactions, preventing dirty reads, non-repeatable reads, and
phantom reads, but can significantly reduce concurrency and increase contention.
Concurrency control mechanisms, such as locking and multiversion concurrency control
(MVCC), implement these isolation levels by either pessimistically locking resources to
prevent conflicts or optimistically proceeding without locks but validating changes before
committing.

Deadlocks occur when two or more transactions are waiting for each other to release
locks, creating a cycle of dependencies that prevents all involved transactions from
proceeding. To handle deadlocks, databases use deadlock detection and resolution



mechanisms. Deadlock detection involves identifying cycles of dependencies, while
resolution involves aborting one or more transactions to break the cycle. For instance,
Oracle uses a wait-for graph to detect deadlocks and automatically rolls back one of the
transactions to resolve the deadlock. Contention arises when multiple transactions
compete for the same resources, leading to delays and reduced performance. To
minimize contention, database administrators can optimize transaction design by
reducing the duration of transactions, using appropriate isolation levels, and avoiding
long-running queries. Additionally, partitioning data and distributing workloads can help
reduce contention by spreading access across multiple resources.

Savepoints are intermediate markers within a transaction that allow partial rollback to a
specific point without affecting the entire transaction, providing finer control over
transaction rollback and enabling more flexible error handling and recovery. To create a
savepoint in Oracle, the SAVEPOINT statement is used, and to rollback to a savepoint,
the ROLLBACK TO statement is used. Savepoints allow a transaction to be partially
undone to a specific point, permitting subsequent operations to proceed without
restarting the entire transaction. Transaction rollback, the process of undoing a
transaction's changes to revert the database to its previous state, occurs automatically
in case of a transaction failure or explicitly using the ROLLBACK statement. Rolling
back a transaction ensures that no partial changes are left in the database, maintaining
data integrity and consistency.

Therefore, transaction management and concurrency control are essential for
maintaining data integrity and consistency in a multi-user database environment.
Understanding and implementing the ACID properties of transactions, choosing
appropriate isolation levels, effectively handling deadlocks and contention, and using
savepoints and rollback mechanisms are critical components of robust database
management. By adhering to these principles, database administrators can ensure
reliable, efficient, and concurrent access to the database, providing a stable and
high-performing environment for users and applications.

Flashback Technology Overview
Flashback technology in Oracle databases provides powerful tools for recovering from
accidental changes and investigating past database states. This set of features allows
database administrators and users to view and restore data to a previous state without
needing to perform a point-in-time recovery from backups. By enhancing the ability to
recover from logical data corruption, user errors, and unintended data modifications,



flashback technology provides a fast and efficient means to correct issues without
significant downtime or complex recovery procedures.

Flashback Query allows users to view the state of the data at a previous point in time by
querying the data as it existed at that time. This feature is particularly useful for
investigating how data looked before a change was made. For example, to view the
contents of a table as they were an hour ago, you can use a query like SELECT *
FROM employees AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' HOUR);.
This retrieves the state of the employees table as it existed one hour ago. On the other
hand, Flashback Table allows users to restore a table to its previous state at a specified
point in time. This is useful for reversing accidental modifications or deletions. For
instance, to flashback the employees table to its state 24 hours ago, you can use
FLASHBACK TABLE employees TO TIMESTAMP (SYSTIMESTAMP - INTERVAL '1'
DAY);, effectively reversing any changes made since then.

Flashback Transaction allows users to reverse the effects of a specific transaction,
which is helpful for undoing changes made by a problematic transaction without
affecting other transactions. To use this feature, you first identify the transaction ID and
then execute the flashback transaction command, such as EXEC
DBMS_FLASHBACK.TRANSACTION_BACKOUT('XID', FORCE => TRUE);. This
command rolls back the effects of the specified transaction, identified by its transaction
ID (XID). Flashback Database, on the other hand, allows the entire database to be
reverted to a previous point in time. This is particularly useful in situations where
widespread changes or corruptions have occurred, requiring a more extensive recovery.
For example, to flashback the database to a specific timestamp, you can use
FLASHBACK DATABASE TO TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);.
This command reverts the entire database to its state 24 hours ago, provided that
Flashback Database logging is enabled and sufficient flashback logs are available.

Flashback technology offers several advantages, making it an invaluable tool for
database management and recovery. It minimizes downtime by allowing for quick
recovery from errors without the need for full database restores. The various flashback
features provide different levels of granularity, from viewing individual rows to reverting
entire transactions or databases, allowing for precise recovery actions. Additionally,
flashback operations are relatively simple to execute compared to traditional recovery
methods, which often involve complex restore procedures from backups. Flashback
Query also serves as an excellent tool for auditing and investigating historical data
states without altering the current database state.



There are several use cases for flashback technology. In the case of accidental data
modification, Flashback Table can be used to revert the table to its previous state,
undoing the unwanted changes. For data corruption recovery caused by a faulty
application or human error, Flashback Database can revert the entire database to a
point before the corruption occurred. Flashback Query aids in compliance and auditing
by allowing the inspection of historical data states without requiring detailed logs or
backups. For transaction management, if a specific transaction causes problems,
Flashback Transaction allows for the reversal of its changes without affecting other
concurrent transactions.

In conclusion, flashback technology in Oracle databases provides powerful and flexible
tools for recovering from various data issues quickly and efficiently. By understanding
and utilizing features like Flashback Query, Flashback Table, Flashback Transaction,
and Flashback Database, database administrators can maintain data integrity, minimize
downtime, and streamline recovery processes, ensuring robust database management
and operational continuity.

Implementing Flashback Features
Implementing Oracle's flashback features can significantly enhance your ability to
recover from data loss, corruption, or inadvertent changes. These features provide
powerful tools to view and restore data to a previous state without performing a
point-in-time recovery from backups. This chapter covers configuring flashback
technologies, using Flashback Query and Flashback Versions Query, performing
Flashback Table operations, and implementing Flashback Database and guaranteed
restore points.

To utilize Oracle's flashback features, proper configuration is essential. First, you must
enable flashback logging, which involves setting the flashback retention target and
turning on flashback logging with the following commands: ALTER SYSTEM SET
DB_FLASHBACK_RETENTION_TARGET = 1440 SCOPE=BOTH; and ALTER
DATABASE FLASHBACK ON;. Additionally, setting up an undo tablespace for
Automatic Undo Management (AUM) is crucial. This can be done by configuring the
undo retention and adding an undo tablespace: ALTER SYSTEM SET
UNDO_RETENTION = 900 SCOPE=SPFILE; and ALTER DATABASE ADD UNDO
TABLESPACE undotbs2 DATAFILE 'undotbs02.dbf' SIZE 200M REUSE;. Ensuring
the database runs in ARCHIVELOG mode is also necessary, which can be achieved



with the commands: SHUTDOWN IMMEDIATE; STARTUP MOUNT; ALTER
DATABASE ARCHIVELOG; ALTER DATABASE OPEN;.

Flashback Query allows users to view the state of data at a previous point in time,
making it useful for investigating past data states. For example, to view the contents of
the employees table as it was an hour ago, you can use the query: SELECT * FROM
employees AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' HOUR);. This
retrieves the state of the table from an hour ago. Flashback Versions Query provides a
history of changes made to a row over a period, allowing you to see how data has
evolved. For instance, to view changes to the salary column for employee ID 101 over
the past day, you can use: SELECT versions_starttime, versions_endtime,
versions_xid, versions_operation, salary FROM employees VERSIONS BETWEEN
TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY) AND SYSTIMESTAMP WHERE
employee_id = 101;.

Flashback Table operations allow you to revert a table to a previous state without
restoring from a backup. This is particularly useful for undoing erroneous data
modifications. To flashback the employees table to its state 24 hours ago, use the
command: FLASHBACK TABLE employees TO TIMESTAMP (SYSTIMESTAMP -
INTERVAL '1' DAY);. This operation reverses any changes made to the table within the
past 24 hours.

Flashback Database is a more extensive recovery option that allows the entire database
to be reverted to a previous state. This is useful for recovering from widespread data
corruption or significant accidental data loss. To enable Flashback Database, configure
the database for flashback logging with the commands: ALTER SYSTEM SET
DB_FLASHBACK_RETENTION_TARGET = 1440 SCOPE=BOTH; and ALTER
DATABASE FLASHBACK ON;. To flashback the database to a specific timestamp,
use: FLASHBACK DATABASE TO TIMESTAMP (SYSTIMESTAMP - INTERVAL '1'
DAY);. This command reverts the entire database to its state 24 hours ago.

Guaranteed Restore Points provide a way to ensure that a specific point in time is
preserved, allowing you to flashback the database to that exact state regardless of
usual flashback retention policies. This is particularly useful for planned maintenance or
migrations where reverting to a known good state is necessary. To create a guaranteed
restore point, use: CREATE RESTORE POINT before_migration GUARANTEE
FLASHBACK DATABASE;. To flashback the database to this restore point, use:
FLASHBACK DATABASE TO RESTORE POINT before_migration;. This command
reverts the database to the state it was in when the restore point was created.



In conclusion, configuring and using Oracle's flashback technologies can significantly
enhance your ability to recover from data-related issues swiftly and efficiently. By
understanding how to configure these technologies, use Flashback Query and
Flashback Versions Query, perform Flashback Table operations, and implement
Flashback Database and guaranteed restore points, database administrators can
maintain data integrity, minimize downtime, and streamline recovery processes. These
tools are essential for robust database management and operational continuity.


