
Lesson 10: Database Diagnostics and Performance
Management

Performance Tuning Principles
Performance tuning is an essential practice in database management aimed at
optimizing the efficiency and speed of database systems. Effective performance tuning
ensures that databases operate smoothly, handle increased loads, and provide quick
responses to queries, which is critical for maintaining user satisfaction and operational
productivity. Poor performance can lead to slow query responses, application timeouts,
and frustrated users, ultimately affecting business operations and productivity. Regular
performance tuning helps in maintaining optimal database performance, ensuring that
the system can handle the required workload efficiently. It also helps in identifying and
addressing potential issues before they escalate into major problems, thus reducing
downtime and maintenance costs. By enhancing performance, organizations can
ensure better resource utilization, prolong the life of their hardware, and provide a better
user experience.

Identifying performance bottlenecks is the first step in the performance tuning process.
Bottlenecks can occur at various points in the system, such as the database server,
network, or application level. Common signs of performance bottlenecks include high
CPU usage, excessive disk I/O, memory shortages, and slow query execution times. To
identify these bottlenecks, database administrators can use a variety of tools and
techniques. Monitoring tools like Oracle Enterprise Manager, SQL Server Management
Studio, or open-source solutions like Nagios and Zabbix can provide insights into
system performance metrics. These tools help track CPU usage, memory utilization,
disk I/O, and network traffic. Additionally, examining database logs, execution plans,
and query performance statistics can help pinpoint specific queries or operations that
are causing delays. SQL trace utilities and explain plans are particularly useful for
identifying inefficient queries and indexing issues.

A systematic approach to performance tuning involves several steps to ensure that
improvements are effective and sustainable. This approach can be broken down into
several phases. First, establish a performance baseline by capturing current
performance metrics, providing a point of reference for measuring improvements and
understanding normal system behavior. Next, identify the areas causing performance
issues by analyzing the baseline data and using diagnostic tools to pinpoint bottlenecks.
Once identified, analyze these bottlenecks to determine their root causes, which may



involve examining system configurations, query execution plans, indexing strategies,
and resource allocation. Then, implement changes to address the identified issues,
such as optimizing SQL queries, adjusting indexing strategies, configuring system
parameters, or upgrading hardware. After implementing changes, test them in a
controlled environment to ensure they produce the desired performance improvements
without introducing new issues. Finally, deploy the tested changes to the production
environment and continuously monitor the system to ensure that performance
improvements are maintained and to detect any new issues that may arise.

Key Performance Indicators (KPIs) are metrics used to evaluate the effectiveness of
performance tuning efforts. They provide quantifiable measurements that help track
progress and identify areas needing further improvement. Common KPIs for database
performance include query response time, which measures the time taken to execute
queries, with shorter response times indicating better performance; throughput,
representing the number of transactions processed per second, with higher throughput
indicating a more efficient system; CPU usage, monitoring the percentage of CPU
resources used by the database, where optimal usage should balance avoiding both
underutilization and overloading; disk I/O, tracking the read and write operations on disk
storage, crucial for maintaining performance, especially for databases with large
volumes of data; memory utilization, measuring the amount of memory used by the
database processes, ensuring efficient memory use to handle more data and concurrent
users without performance degradation; network latency, measuring the time taken for
data to travel across the network, with lower latency indicating better network
performance; and cache hit ratio, indicating the effectiveness of the database cache,
where a higher ratio means more queries are being served from the cache, reducing the
need for disk access. By regularly monitoring these KPIs, database administrators can
gain insights into the performance of their systems and make informed decisions about
where to focus their tuning efforts.

Monitoring and Diagnostic Tools
Monitoring and diagnostic tools are essential components of effective database
management. They provide real-time and historical insights into the performance and
health of a database system, enabling administrators to detect, diagnose, and resolve
issues promptly. This chapter provides an overview of key monitoring tools, discusses
the use of performance views and dynamic performance tables, explains the benefits of
real-time and historical monitoring, and covers the setup and management of alerts and
notifications.



Oracle provides several powerful tools for monitoring and diagnosing database
performance issues. Three of the most important tools are Oracle Enterprise Manager
(OEM), Automatic Workload Repository (AWR), and Automatic Database Diagnostic
Monitor (ADDM).

Oracle Enterprise Manager (OEM) is a comprehensive management tool that offers a
wide range of features for monitoring and administering Oracle databases. OEM
provides a web-based interface where administrators can view performance metrics,
configure alerts, manage database instances, and perform various administrative tasks.
It offers detailed performance dashboards, real-time monitoring, and historical data
analysis, making it a central hub for database management.

Automatic Workload Repository (AWR) is a built-in repository that collects,
processes, and maintains performance statistics. AWR snapshots capture data at
regular intervals, providing a historical view of database performance. These snapshots
include information about system load, wait events, SQL statistics, and more. AWR
reports are invaluable for identifying performance trends, diagnosing issues, and
making informed tuning decisions.

Automatic Database Diagnostic Monitor (ADDM) analyzes AWR data to identify
performance bottlenecks and recommend corrective actions. ADDM provides a
high-level overview of potential problems and suggests specific actions to address
them. This automated diagnostic tool simplifies the process of performance tuning by
focusing on the most impactful issues.

Using Performance Views and Dynamic Performance Tables
Performance views and dynamic performance tables (also known as V$ views) are
critical for accessing detailed performance data in real-time. These views provide
information about various aspects of database operations, including session activity,
resource usage, and wait events.

For example, the V$SESSION view provides information about current database
sessions, including user activity, session state, and resource consumption.
Administrators can query this view to identify active sessions and investigate
performance issues related to specific users or applications.



The V$SYSTEM_EVENT view provides data on system-wide wait events, helping
administrators understand where the database is spending time waiting for resources.

Using these performance views, administrators can gain granular insights into database
operations and identify areas for improvement.

Real-time and Historical Monitoring
Effective database management requires both real-time and historical monitoring.
Real-time monitoring allows administrators to detect and respond to issues as they
occur, minimizing downtime and performance degradation. Tools like OEM provide
real-time dashboards and alerts, giving immediate visibility into the health and
performance of the database.

Historical monitoring, on the other hand, involves analyzing past performance data to
identify trends, diagnose recurring issues, and plan for future capacity needs. AWR
snapshots and reports are crucial for historical monitoring, as they provide a detailed
record of performance metrics over time. By comparing historical data, administrators
can identify patterns, such as periodic spikes in load or long-term degradation, and take
proactive measures to address them.

Alerts and Notifications
Alerts and notifications are essential for proactive database management. They enable
administrators to receive immediate notifications about critical issues, such as
performance degradation, resource exhaustion, or security breaches, allowing for swift
corrective action.



In OEM, administrators can configure alerts based on specific performance thresholds.
For example, an alert can be set to trigger when CPU usage exceeds 90%, or when a
tablespace reaches 80% of its capacity. These alerts can be sent via email, SMS, or
integrated with other monitoring systems.

By setting appropriate thresholds and alerting mechanisms, administrators ensure they
are promptly informed of any issues that may impact the database's performance or
availability.

Monitoring and diagnostic tools are indispensable for maintaining the performance and
health of database systems. Oracle Enterprise Manager (OEM), Automatic Workload
Repository (AWR), and Automatic Database Diagnostic Monitor (ADDM) provide
comprehensive capabilities for monitoring, diagnosing, and optimizing database
performance. Performance views and dynamic performance tables offer detailed,
real-time insights into database operations. Combining real-time and historical
monitoring enables administrators to respond to immediate issues and plan for
long-term improvements. Finally, setting up alerts and notifications ensures that
administrators are promptly informed of critical issues, allowing for quick resolution and
minimizing impact on the database environment. By leveraging these tools and
techniques, database administrators can effectively manage and maintain
high-performing and reliable database systems.

SQL Optimization
SQL optimization is crucial for improving the performance and efficiency of database
queries. Properly optimized SQL queries can significantly reduce response times,
resource consumption, and overall system load. This chapter covers key aspects of
SQL optimization, including understanding SQL execution plans, indexing strategies for
performance, query optimization techniques, and the use of hints and bind variables.

Understanding SQL execution plans is fundamental to SQL optimization because it
allows you to identify inefficient operations and optimize them. An SQL execution plan is
a detailed description of the steps taken by the database engine to execute a query,



including information about the order of operations, the use of indexes, and the methods
used to join tables. To generate and view an execution plan in Oracle, you can use the
EXPLAIN PLAN statement followed by the SELECT statement. The output provides
details such as the access method used (e.g., full table scan, index scan), the estimated
cost, and the number of rows processed. By analyzing this information, you can identify
areas where the query can be improved, such as using an index instead of a full table
scan.

Indexes are powerful tools for improving the performance of SQL queries by allowing
the database to quickly locate and retrieve the rows that match query conditions.
However, creating and maintaining indexes involves overhead, so it's important to use
indexing strategies wisely. Primary and unique indexes are automatically created for
primary key and unique constraints, ensuring that queries involving these columns are
optimized. Composite indexes are created on multiple columns and can optimize
queries that filter or sort by multiple columns. Covering indexes include all the columns
required by a query, eliminating the need to access the table data. Selective indexes
should be created on columns with high selectivity, where the column values are unique
or nearly unique. Regularly analyzing and rebuilding indexes ensures they remain
efficient, as fragmentation and outdated statistics can degrade performance.

Optimizing SQL queries involves various techniques to ensure they execute efficiently.
Avoiding full table scans is crucial, so ensure that queries use indexes instead of
scanning entire tables by using appropriate where clauses and avoiding functions on
indexed columns. Optimizing joins involves using the most efficient join type and
ensuring that join columns are indexed. Reducing data volume by selecting only the
columns needed by the application can also improve performance. Using subqueries
and inline views judiciously and sometimes breaking a complex query into smaller parts
can help. Set operations like UNION, INTERSECT, and MINUS can sometimes be more
efficient than equivalent joins and subqueries. For example, replacing a subquery with a
join can sometimes improve performance.

Hints are directives that instruct the database optimizer on how to execute a query.
They can influence the optimizer's decisions, such as forcing the use of a particular
index or join method. Hints are included in the SQL statement using the /*+ hint */
syntax. For example, to force the use of an index, you can use SELECT /*+
INDEX(employees idx_dept_id) */ * FROM employees WHERE department_id =
10;. Bind variables are placeholders in SQL statements that are replaced with actual
values at runtime, improving performance by allowing the database to reuse execution
plans for similar queries with different values. Using bind variables reduces the
overhead of parsing and optimizing each query.



In conclusion, SQL optimization is a critical aspect of database management that
ensures queries run efficiently, handle workloads effectively, and provide fast responses
to user requests. Understanding SQL execution plans, implementing effective indexing
strategies, applying query optimization techniques, and using hints and bind variables
are essential components of maintaining optimal database performance. By diligently
applying these principles, organizations can achieve better resource utilization, improve
user satisfaction, and maintain a robust and reliable database environment.


