
Lesson 2: Database System Architecture
Database system architecture refers to the design and structure of a database system
that defines how data is stored, accessed, and managed. It involves several
components and layers that work together to ensure data integrity, security, and
efficiency in data processing and retrieval.

Three-tier Architecture
Three-tier architecture is a well-established software design pattern that divides an
application into three distinct layers: the client tier, the application tier, and the database
tier. This separation enhances scalability, maintainability, and flexibility by segregating
different aspects of the application into their own layers.

The client tier, also known as the presentation tier, is the topmost layer in the three-tier
architecture. It is responsible for interacting with the end-users and presenting the user
interface. This layer handles user inputs, sending them to the application tier, and
displays the processed results. Typical components in this tier include web browsers
(such as Chrome, Firefox, or Safari) for web applications, standalone desktop
applications, and mobile apps. The client tier’s main functions are to provide a graphical
or text-based interface for user interaction, handle input collection, and present data in a
comprehensible format.

The application tier, also known as the logic tier or middle tier, contains the business
logic of the application. It processes user requests, performs calculations, makes
decisions, and manages the flow of data between the client and database tiers. Serving
as the intermediary, it ensures that user interactions are properly handled and data is
processed correctly. This tier typically consists of web servers, which handle HTTP
requests, and application servers, which execute business logic and communicate with
the database. The application tier’s functions include implementing core functionalities
and rules, validating and processing inputs, facilitating communication between the
client and database tiers, and integrating with other services and APIs when necessary.

The database tier, or data tier, is the bottom layer and is responsible for storing,
retrieving, and managing data. It ensures data integrity, security, and consistency.
Components in this tier include Database Management Systems (DBMS) such as
MySQL, PostgreSQL, Oracle Database, and MongoDB, along with physical or
cloud-based data storage systems. The database tier's functions encompass secure



and efficient data storage, executing queries to retrieve data requested by the
application tier, managing transactions to enforce data integrity, and handling data
backup, recovery, and replication to prevent data loss.

Three-tier architecture offers several advantages. It enhances scalability, as each tier
can be scaled independently based on demand, such as adding more web servers in
the application tier to handle increased user traffic. Maintainability is improved because
changes in one tier do not directly affect the other tiers, allowing for easier updates and
modifications. The architecture provides flexibility by enabling the use of different
technologies in each tier, supporting a more technology-agnostic approach. Security is
enhanced by isolating the database tier and controlling access through the application
tier, thereby protecting sensitive data. Performance is optimized by distributing the load
across tiers, with the application tier handling intensive data processing while the client
tier focuses on the user interface.

In conclusion, three-tier architecture is a powerful design pattern that improves the
organization, scalability, and manageability of software applications. By separating the
client, application, and database tiers, developers can build robust, flexible, and
maintainable systems capable of efficiently handling modern computing demands.

Components of a DBMS
A Database Management System (DBMS) is a complex software system designed to
manage, store, retrieve, and manipulate data in databases. It consists of several key
components, each with specific roles and responsibilities. Understanding these
components is essential for comprehending how a DBMS functions and ensures data
integrity, efficiency, and security. The primary components of a DBMS include the
Storage Manager, Query Processor, and Transaction Manager.

Storage Manager
The Storage Manager is responsible for managing the storage of data within the
database. Its primary functions include:

File Manager: Manages the allocation of space on disk storage and the data
structures used to represent information stored on disk. It handles the creation,
deletion, and modification of files that store the data.



Buffer Manager: Manages the data in memory buffers, acting as an intermediary
between the main memory and the disk storage. It ensures that frequently
accessed data is kept in memory to improve access times and overall system
performance.

Authorization and Integrity Manager: Enforces access control policies to
ensure that only authorized users can access or modify data. It also maintains
data integrity by enforcing constraints such as primary keys, foreign keys, and
other rules defined in the database schema.

Disk Manager: Handles the physical storage of data on disk drives, including
data placement, storage organization, and efficient data retrieval techniques.

Query Processor
The Query Processor is responsible for interpreting and executing database queries. Its
main components include:

Query Parser: Analyzes and parses the SQL queries submitted by users or
applications. It checks the query syntax and transforms the query into an internal
representation that can be processed by the query optimizer and executor.

Query Optimizer: Evaluates multiple query execution plans and selects the most
efficient one. It uses cost-based optimization techniques, considering factors like
disk I/O, CPU usage, and memory usage to determine the best execution
strategy.

Query Executor: Executes the optimized query plan by interacting with the
storage manager to retrieve and manipulate data. It carries out the actual
operations like selection, projection, join, and other SQL operations.

SQL Engine: The core component that understands and processes SQL
commands. It converts SQL queries into a series of low-level instructions that
can be executed by the database engine.

Transaction Manager
The Transaction Manager ensures that database transactions are processed reliably
and adhere to the ACID (Atomicity, Consistency, Isolation, Durability) properties. Its key
functions include:



Transaction Coordinator: Manages the execution of transactions, ensuring that
all parts of a transaction are completed successfully before committing the
changes to the database. If any part of a transaction fails, it ensures that the
entire transaction is rolled back to maintain data integrity.

Concurrency Control Manager: Manages concurrent access to the database
by multiple transactions. It ensures that transactions are executed in a way that
avoids conflicts and maintains database consistency. Techniques like locking,
timestamp ordering, and multiversion concurrency control (MVCC) are used to
achieve this.

Recovery Manager: Ensures that the database can recover from system
crashes, power failures, and other unexpected events. It uses techniques such
as logging and checkpointing to maintain a record of transactions and system
states, allowing the database to be restored to a consistent state after a failure.

The Storage Manager, Query Processor, and Transaction Manager are integral
components of a DBMS, each playing a crucial role in the overall functionality and
performance of the system. The Storage Manager handles the physical storage and
retrieval of data, the Query Processor interprets and executes user queries efficiently,
and the Transaction Manager ensures the reliability and integrity of transactions.
Together, these components enable a DBMS to provide robust, efficient, and secure
data management solutions.

System Catalog and Metadata
A system catalog, also known as a data dictionary or metadata repository, is a critical
component of a Database Management System (DBMS). It serves as a central
repository for metadata, which is data about the data within the database. The system
catalog ensures effective data management by maintaining detailed information about
database objects and their structure.

The system catalog is a collection of tables and views that the DBMS maintains to store
metadata. This metadata includes information about tables, columns, indexes,
constraints, views, stored procedures, functions, triggers, users, roles, and tablespaces.
Each of these components plays a crucial role in the database's operation and
management. Metadata in the system catalog is categorized into several types:



structural, descriptive, administrative, and statistical. Structural metadata describes the
structure of database objects, such as table schemas and columns. Descriptive
metadata provides information about the data itself, including descriptions and
classifications. Administrative metadata includes information related to database
administration, such as user permissions and storage details. Statistical metadata
contains statistical information used by the query optimizer to generate efficient query
execution plans, such as data distribution statistics and cardinality.

The system catalog automatically updates whenever changes are made to the database
schema or when database objects are created, modified, or dropped. It plays a pivotal
role in various aspects of database management. For instance, it aids in schema
management by providing a centralized repository of schema-related information. The
query optimizer relies on statistical metadata to generate efficient query execution
plans. Metadata about constraints and relationships helps ensure data integrity and
consistency across the database. Security policies and access controls are enforced
using metadata about users, roles, and privileges. Additionally, the system catalog
assists in routine database maintenance tasks such as backup, recovery, and
performance tuning. Metadata also provides valuable context for users to understand
the database's structure and content, facilitating data exploration and discovery.

Most DBMSs provide access to the system catalog through special system tables or
views, which can be queried using standard SQL. For instance, the Information Schema
is a standardized set of views defined by the SQL standard that provides access to
metadata across different DBMSs. Proprietary views are also available, such as
SYS.ALL_TABLES and SYS.ALL_USERS in Oracle, or
INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS in
MySQL. Example queries to access metadata from a system catalog include listing all
tables in the database, getting column details for a specific table, listing all indexes on a
specific table, and viewing all users and their roles.

Logical vs. Physical Data Independence
Data independence is a fundamental concept in database management systems
(DBMS) that refers to the capacity to modify a database schema at one level without
affecting the schema at the next higher level. This concept is crucial for ensuring the
flexibility, scalability, and maintainability of database systems. Data independence is
typically categorized into two types: logical data independence and physical data
independence.



Logical Data Independence
Logical data independence is the ability to change the logical schema without requiring
changes to the external schemas or application programs. The logical schema
represents the structure of the data as seen by the database administrators, including
tables, views, indexes, and relationships. Changes to the logical schema might include
adding or removing tables, altering columns, modifying constraints, or creating new
views.

The key advantage of logical data independence is that it allows the database structure
to evolve without necessitating changes in the user applications. For example, if new
fields need to be added to a table or if the relationships between tables need to be
modified, these changes can be made without requiring updates to the queries and
applications that interact with the database. Logical data independence ensures that
users can continue to use the database seamlessly even as the underlying structure
changes.

Achieving logical data independence can be challenging because it requires a clear
separation between the logical structure and the application programs. Techniques such
as using views, which provide a virtual table based on the result-set of a query, and
employing abstraction in application development can help achieve logical data
independence.

Physical Data Independence
Physical data independence refers to the ability to change the physical schema without
affecting the logical schema. The physical schema defines how the data is stored in the
storage devices, including file structures, indexing methods, and data compression
techniques. Changes to the physical schema might involve altering the storage
structures, adding new indexes to improve performance, or reorganizing data to
optimize access times.

The primary benefit of physical data independence is that it allows database
administrators to optimize and manage the storage of data without impacting the logical
structure or the applications built upon it. For instance, the DBMS might decide to move
data to a different type of storage media, change the format of storage files, or introduce
new indexing techniques to enhance performance. These changes can be implemented
without necessitating any modifications to the logical schema or the applications that
access the database.



Achieving physical data independence is generally more feasible than logical data
independence because physical changes are typically handled internally by the DBMS.
Advanced DBMS features, such as automatic storage management, dynamic indexing,
and query optimization techniques, facilitate physical data independence by abstracting
the physical storage details from the logical structure.

Comparison and Importance
Both logical and physical data independence are crucial for the efficient and effective
management of database systems. Logical data independence ensures that the
database can adapt to changing requirements without disrupting user applications,
providing flexibility and future-proofing the database against evolving business needs.
Physical data independence, on the other hand, enables performance optimization and
efficient storage management, ensuring that the database remains responsive and
scalable as the volume of data grows.

In summary, logical data independence focuses on protecting the user applications from
changes in the logical schema, whereas physical data independence deals with
safeguarding the logical schema from changes in the physical storage details. Together,
these forms of data independence contribute to a robust, adaptable, and efficient
database management system that can meet the evolving needs of users and
applications while maintaining high performance and manageability.


