Lesson 1: Review of Base Architecture

A database is an organized collection of data stored and accessed electronically. It is
designed to manage, retrieve, and manipulate data efficiently and securely. Databases
can be structured in various ways, such as tables, rows, and columns in relational
databases, or as documents, graphs, and key-value pairs in non-relational (NoSQL)
databases. This structured organization facilitates the systematic handling of large
volumes of data, ensuring that the data remains accessible and manageable.

The primary purpose of a database is to store data in a structured manner that allows
for easy retrieval, management, and updating. Databases serve several critical
functions in data management. They enable data storage by organizing large amounts
of data in a way that ensures data integrity and security. Efficient data retrieval is
another essential purpose, allowing users to query and obtain specific data quickly.
Databases also facilitate data manipulation, supporting the addition, deletion, and
modification of data as needed.

Data management is a core function of databases, providing tools and interfaces for
tasks such as backup, recovery, and access control. This management ensures that
data remains safe, recoverable, and accessible only to authorized users. Additionally,
databases support data analysis and reporting by providing structured data that can be
used to generate insights and make informed decisions. This analytical capability is
crucial for businesses and organizations that rely on data-driven decision-making.

Concurrency is another critical aspect of databases, as they allow multiple users to
access and manipulate data simultaneously while maintaining consistency and
preventing conflicts. This concurrent access capability ensures that operations can
proceed smoothly without data corruption. Lastly, databases are designed to be
scalable, capable of handling increasing amounts of data and user load. This scalability
ensures that databases can grow with the needs of the organization, maintaining
performance and reliability even as demand increases.

Differences Between Database Systems and File Systems

Database systems and file systems differ significantly in terms of structure, data
management, integrity, security, and concurrency. Databases are highly structured and
organize data in specific formats, such as tables in relational databases or collections



and documents in NoSQL databases. This organization is governed by schemas, which
define the structure, relationships, and constraints on the data. In contrast, file systems
manage data in files and directories, offering a less structured approach. The data
within these files can be of various types, either unstructured or semi-structured, and file
systems do not enforce a specific format.

In terms of data management, databases provide sophisticated capabilities, including
indexing, query optimization, transaction management, and concurrency control. They
support complex queries and data manipulation using languages like SQL (Structured
Query Language). File systems, on the other hand, offer basic data management
functionalities such as reading, writing, and deleting files. Accessing data typically
requires reading the entire file or using simple search mechanisms, as file systems do
not support complex queries or data manipulation.

Data integrity and consistency are key features of database systems. They enforce
these through constraints, rules, and ACID (Atomicity, Consistency, Isolation, Durability)
properties, ensuring that data remains accurate and reliable even in the event of
failures. File systems do not inherently enforce data integrity or consistency rules, and
maintaining data accuracy and reliability is the responsibility of the application using the
file system. Consequently, file systems have limited support for ensuring atomic
operations or handling failures gracefully.

Security is another area where databases excel. They offer advanced features such as
user authentication, authorization, and encryption to protect data from unauthorized
access and breaches. File systems provide basic security features, including file
permissions and access controls, to restrict user access to files and directories.
However, advanced security measures like encryption and detailed access controls are
typically implemented at the application level in file systems.

Concurrency and transaction management also set databases apart from file systems.
Database systems support concurrent access by multiple users and manage
transactions to ensure data consistency and isolation between operations. Mechanisms
like locking and isolation levels are used to handle concurrent transactions effectively.
File systems have limited support for concurrent access and transaction management,
lacking built-in mechanisms to handle concurrent modifications, which can lead to data
corruption or conflicts.

In summary, while both database systems and file systems are used for storing and
managing data, databases provide a higher level of structure, advanced data
management capabilities, enhanced security, and robust support for complex queries



and transactions. File systems are more suitable for managing unstructured or
semi-structured data with simpler access and management requirements. The choice
between using a database system or a file system depends on the specific needs and
complexity of the data management tasks at hand.

Overview of Database Management Systems (DBMS)

A Database Management System (DBMS) is a software system that facilitates the
creation, organization, management, and utilization of databases. It provides an
interface for users and applications to interact with the database, enabling efficient
storage, retrieval, updating, and manipulation of data. Here's an overview of the key
components and functions of a typical DBMS:

Components of a DBMS:

Database Engine: The core component responsible for storing, managing, and
manipulating data. It includes modules for data storage, indexing, query
processing, transaction management, and concurrency control.

Data Definition Language (DDL) Processor: Allows users to define the
structure and organization of the database schema, including tables, indexes,
constraints, and relationships.

Data Manipulation Language (DML) Processor: Enables users to perform
operations on the data stored in the database, such as inserting, updating,
deleting, and querying records.

Query Processor and Optimizer: Translates user queries written in high-level
languages like SQL into low-level instructions that the database engine can
execute efficiently. It also optimizes query execution to improve performance.

Transaction Manager: Ensures the atomicity, consistency, isolation, and
durability (ACID properties) of transactions by managing their execution and
recovery in case of failures.

Concurrency Control Manager: Manages concurrent access to the database
by multiple users or applications, ensuring that transactions execute correctly
and do not interfere with each other.



Data Dictionary: Stores metadata about the database schema, including
information about tables, columns, data types, constraints, and relationships. It
provides a centralized repository for managing and accessing metadata.

Security and Authorization Module: Controls access to the database and its
resources, enforcing authentication, authorization, and data encryption to protect
against unauthorized access and security breaches.

Functions of a DBMS:

Data Storage: Stores data persistently on disk or in memory, using efficient data
structures and storage techniques to optimize performance and resource
utilization.

Data Retrieval: Enables users to retrieve specific data from the database using
queries written in SQL or other query languages. It supports various retrieval
operations, including filtering, sorting, joining, and aggregating data.

Data Manipulation: Facilitates the addition, modification, and deletion of data in
the database through insert, update, and delete operations. It ensures data
integrity and consistency by enforcing constraints and validation rules.

Data Administration: Provides tools and utilities for managing and administering
the database, including tasks such as backup and recovery, data import and
export, schema modifications, and performance tuning.

Concurrency Control: Manages concurrent access to the database by multiple
users or transactions, preventing conflicts and ensuring data consistency and
isolation.

Transaction Management: Ensures the atomicity, consistency, isolation, and
durability (ACID properties) of transactions by managing their execution, rollback,
and recovery in case of failures.

Security and Access Control: Controls access to the database and its
resources, enforcing authentication, authorization, and data encryption to protect
against unauthorized access and security breaches.



Query Optimization: Analyzes and optimizes user queries to improve
performance and resource utilization, using techniques such as query rewriting,
indexing, and execution plan optimization.

Overall, a DBMS plays a crucial role in managing and utilizing databases effectively,
providing users and applications with the tools and functionalities needed to store,
retrieve, manipulate, and secure data efficiently. It serves as a central hub for data
management within organizations, supporting a wide range of applications and use
cases across various industries and domains.

Types of Databases

Databases come in various types, each suited to different data storage and
management needs. Here are three main types of databases:

Relational Databases:

Relational databases are structured around the relational model, which organizes data
into tables consisting of rows and columns. Each table represents an entity, and
relationships between entities are established through keys. Relational databases use
Structured Query Language (SQL) for data manipulation and querying. They enforce
data integrity through constraints and support ACID properties to ensure transactional
consistency. Examples of relational database systems include MySQL, PostgreSQL,
Oracle Database, Microsoft SQL Server, and SQLite. Relational databases are widely
used for applications requiring complex queries, data integrity, and consistency.

NoSQL Databases:

NoSQL (Not Only SQL) databases are designed to handle large volumes of
unstructured or semi-structured data and provide flexible schema models. Unlike
relational databases, NoSQL databases do not use the tabular structure of rows and
columns. Instead, they may organize data as documents (document-oriented
databases), key-value pairs (key-value stores), graphs (graph databases), or
wide-column stores. NoSQL databases offer horizontal scalability, high availability, and
performance for distributed and web-scale applications. Examples of NoSQL databases
include MongoDB, Cassandra, Couchbase, Redis, and Neo4j. NoSQL databases are
commonly used in applications such as social media, real-time analytics, and content
management systems.

Distributed Databases:



Distributed databases distribute data across multiple nodes or servers, enabling
horizontal scalability and fault tolerance. They replicate and partition data to ensure high
availability and performance. Distributed databases can be either relational or NoSQL,
depending on their data model and architecture. They support distributed transactions
and consistency models suited to distributed environments. Distributed databases are
used in applications requiring high availability, fault tolerance, and scalability, such as
cloud-based services, distributed systems, and global-scale applications. Examples of
distributed databases include Google Spanner, Amazon DynamoDB, Apache
Cassandra, and Riak.

Each type of database has its strengths and weaknesses, and the choice depends on
factors such as data structure, scalability requirements, consistency needs, and
performance characteristics of the application. Organizations often use a combination of
different types of databases to meet diverse data management needs across their
systems and applications.



