
Lesson 3: Concurrency and Parallelism in Elixir
Elixir is a programming language that runs on the Erlang virtual machine (BEAM) and is
designed for building scalable and fault-tolerant applications, particularly those that
involve concurrent and distributed systems. Elixir provides a powerful concurrency
model based on lightweight processes called "actors" and a message-passing
mechanism that enables effective parallelism and fault tolerance. Here's an overview of
how concurrent processes work in Elixir:

1. Processes in Elixir
In Elixir, processes are lightweight, isolated units of execution. Unlike OS processes,

Elixir processes are managed by the Erlang VM and have very low memory overhead.
You can spawn thousands of processes without consuming significant resources.

2. Actor Model
Elixir processes follow the actor model, where each process has its own memory and

execution space. Processes communicate with each other by sending and receiving
messages. This isolation prevents processes from directly sharing memory, reducing
the likelihood of data races and other concurrency issues.

3. Spawning Processes
You can create a new process using the `spawn` or `Task` module. The `spawn`

function takes a function as an argument and starts a new process to execute that
function.

pid = spawn(fn -> IO.puts("Hello from process
#{inspect(self())}") end)

4. Sending and Receiving Messages
Processes communicate by sending messages using the `send` function and

receiving them using the `receive` block. Messages are asynchronous, and the order in
which messages are received is not guaranteed.

send(pid, {:message, "Hello"})

receive do
{:message, msg} -> IO.puts("Received: #{msg}")

end



5. Pattern Matching
Elixir's pattern matching is used when receiving messages. You can match on specific

message formats and extract values from them.

6. Process State
Elixir processes are stateless by design. To maintain state, you typically pass the

current state as an argument to functions and return the updated state in messages.

7. Linking and Monitoring
Elixir processes can be linked together using `Process.link/1` to monitor each other's

health. If one process crashes, linked processes can be notified. Monitoring can be
done using `Process.monitor/1`.

8. Supervision Trees
Elixir promotes the use of supervision trees to build fault-tolerant systems.

Supervision trees are hierarchies of processes where supervisors monitor and restart
child processes in the event of failures.

9. Task Module
The `Task` module provides a higher-level abstraction for working with concurrent

tasks and processes. It's especially useful for handling tasks that can be executed in
parallel.

10. Concurrent Primitives
Elixir provides various concurrency primitives such as locks, agents, and

GenServers, which allow you to manage concurrent state and perform specific tasks.

Elixir's concurrency model enables you to build highly responsive and fault-tolerant
applications. By leveraging lightweight processes and message passing, you can create
systems that can handle a large number of concurrent tasks while maintaining stability
and resilience.

Message passing and process communication
Message passing and process communication are fundamental concepts in Elixir's
concurrency model. Elixir processes communicate by sending messages to each other,
allowing them to exchange information and coordinate their actions. This approach
ensures that processes are isolated and don't share memory, which helps prevent



common concurrency issues like data races and deadlocks. Here's how message
passing and process communication work in Elixir:

1. Sending Messages
To send a message from one process to another, you use the `send` function. The

sender's process ID (`self()`) is automatically included in the message, allowing the
recipient to reply if needed.

send(pid, {:message, "Hello"})

2. Receiving Messages
Messages are received using the `receive` block. Inside the `receive` block, you can

pattern match on the messages you're interested in and take appropriate actions.

receive do
{:message, msg} -> IO.puts("Received: #{msg}")
{:other_message, data} -> process_other_message(data)

end

3. Pattern Matching
Elixir's powerful pattern matching allows you to extract specific parts of the received

message for processing.

4. Asynchronous Communication
Message passing is asynchronous, meaning the sender does not wait for the receiver

to process the message. This asynchronous nature enables high concurrency and
parallelism.

5. No Order Guarantee
The order of message reception is not guaranteed. Elixir processes may process

messages in a different order than they were sent. This non-deterministic behavior can
be controlled using techniques like selective receive and process prioritization.

6. Selective Receive
Elixir's `receive` block can include multiple clauses to match different types of

messages. This allows you to handle specific messages while ignoring others.

receive do
{:important_message, data} -> handle_important(data)

end



7. Process Links and Monitors
Elixir processes can be linked together using `Process.link/1` to form supervision

trees. When one process crashes, linked processes are notified, allowing them to take
appropriate actions. Process monitoring is similar but involves less strict ties between
processes.

8. Timeouts
The `receive` block can include a timeout to prevent it from waiting indefinitely for a

message. If no matching message arrives within the specified time, the block will exit,
allowing you to perform other actions or handle the timeout gracefully.

receive do
{:message, data} -> handle_message(data)

after
5000 -> handle_timeout()

end

Message passing and process communication form the foundation of Elixir's
concurrency model. By leveraging these mechanisms, Elixir developers can build
scalable, fault-tolerant systems that handle concurrent tasks effectively while
maintaining isolation between processes.

Leveraging OTP for building fault-tolerant applications
OTP (Open Telecom Platform) is a set of libraries, tools, and design principles built on
top of the Erlang programming language and runtime system. OTP provides a powerful
framework for building fault-tolerant, scalable, and distributed applications. It
encapsulates best practices and patterns for handling concurrency, error management,
supervision, and more. Here's how you can leverage OTP to build fault-tolerant
applications in Elixir:

Supervision Trees:
OTP introduces the concept of supervision trees, which are hierarchical structures that
manage and monitor processes in an application. Supervision trees help ensure that if a
process fails, it can be restarted automatically without affecting the overall application.

Supervisors:



A supervisor is a process responsible for starting, stopping, and monitoring its child
processes. There are different types of supervisors, such as simple one-for-one
supervisors and more complex strategies like one-for-all and rest-for-one supervisors.

Application Structure:
OTP encourages structuring your application as a collection of smaller, isolated
processes that communicate through message passing. Each process has a
well-defined role, and supervisors manage the lifecycle of these processes.

GenServer:
OTP provides the GenServer behavior, which abstracts away the details of creating a
process, managing state, and handling messages. A GenServer process can maintain
state, receive and respond to messages, and be supervised like any other process.

GenEvent:
The GenEvent behavior allows you to create event handlers that can subscribe to
events and react accordingly. This is useful for building event-driven systems.

OTP Behaviors:
OTP includes various other behaviors, such as GenStateMachine, GenStage, and
Supervisor.DynamicSupervisor, that provide higher-level abstractions for specific use
cases.

Fault Tolerance:
In OTP, processes are linked together, and supervisors monitor the health of child
processes. If a process crashes, the supervisor can take predefined actions, such as
restarting the process, restarting multiple processes, or shutting down the application
gracefully.

Hot Code Swapping:
One of the unique features of Erlang and OTP is the ability to perform hot code
swapping, which allows you to update running applications without stopping them. This
is especially useful for applications that require continuous uptime.

Distributed Systems:
OTP includes tools for building distributed systems with features like process location
transparency, remote process communication, and distributed data storage.

Error Kernel:



OTP provides an "error kernel" philosophy, where developers focus on handling errors
at the lowest possible level and letting supervisors manage higher-level error recovery.
This leads to robust and resilient applications.

By embracing OTP's principles and using its built-in behaviors and tools, you can design
and build applications that are inherently fault-tolerant, highly concurrent, and capable
of handling errors gracefully. OTP's battle-tested patterns and abstractions have been
instrumental in creating reliable systems for telecommunication, finance, messaging
platforms, and more.


