
Lesson 9: String Algorithms

In the ever-evolving landscape of computer science, few concepts have proven as
integral and versatile as string algorithms. These algorithms, designed to manipulate,
search, and analyze sequences of characters, lie at the heart of numerous applications
that permeate our digital lives. From text processing and information retrieval to
bioinformatics and artificial intelligence, the significance of string algorithms cannot be
overstated.

At the core of their importance is the fundamental role that efficient string manipulation
and matching play in computer science. Strings, sequences of characters representing
words, sentences, or even genetic codes, are ubiquitous in the digital realm. Consider
the plethora of tasks that involve processing text: web searches, DNA sequencing,
programming code analysis, natural language processing, and more. In each of these
domains, the ability to swiftly and accurately manipulate strings is the linchpin upon
which complex operations are built.

Efficiency in string algorithms directly impacts the performance of these applications. As
datasets grow larger and computational demands increase, the necessity of optimized
string handling becomes even more pronounced. In the realm of information retrieval,
for instance, search engines sift through colossal amounts of textual data to provide
relevant results in milliseconds. Behind the scenes, intricate string matching algorithms
ensure that your query matches documents accurately and swiftly.

Moreover, string algorithms intersect with various other subfields of computer science,
exemplifying their interdisciplinary influence. In bioinformatics, they aid in analyzing
genetic sequences, contributing to groundbreaking research in genetics and medicine.
In data compression, string algorithms help reduce the size of files for efficient storage
and transmission. In cryptography, they underpin secure communication protocols,
enabling confidential information exchange.

String Matching Algorithms
Introduction to String Matching and its Significance



String matching, a fundamental concept in computer science, holds immense
importance in text processing and pattern recognition. This technique involves
identifying specific character sequences within larger texts, playing a crucial role in
tasks like search engines, plagiarism detection, language translation, and genetic
analysis.

In text processing, efficient string matching enables swift and accurate information
retrieval from vast data repositories. Pattern recognition heavily relies on this concept to
identify motifs in genetic data, keywords in spoken language, and potential threats in
cybersecurity.

Beyond computers, string matching aids biologists, archaeologists, and linguists in
decoding genetic information, uncovering historical insights, and understanding
languages. Throughout this exploration, we'll delve into the mechanics of string
matching algorithms, from basic approaches to advanced methods like
Knuth-Morris-Pratt and Boyer-Moore. This journey will illuminate how string matching
impacts diverse fields, from shaping language processing to driving medical
advancements and transforming data analysis.

Naive String Matching Algorithm
The Naive String Matching Algorithm is a basic but inefficient method for identifying
occurrences of a specific pattern within a longer text. The process involves sequentially
comparing characters from the pattern to characters in the text, starting from every
possible position in the text.



To elaborate on the steps of the algorithm, it begins by scanning the text from the
beginning. At each position in the text, the characters of the pattern are matched
against the corresponding characters in the text, beginning from that particular position.
When all characters in the pattern correspond to those in the text, a successful match is
identified. If a disparity between characters occurs at any point, the algorithm shifts its
starting position in the text and initiates the comparison process once again.

For instance, consider the pattern "abc" and the text "xabcyz". The algorithm would
begin by matching "a" with the first character "x" in the text, followed by comparing "b"
with "a", and eventually checking "c" against "b". As all characters correlate, a match is
recognized at position 2 within the text.

In terms of time complexity, the naive string matching algorithm's efficiency is limited. It
exhibits a time complexity of O((n - m + 1) * m), where "n" represents the length of the
text and "m" signifies the length of the pattern. The algorithm's operation involves
examining the characters of the pattern against those of the text at each conceivable
starting point. With (n - m + 1) potential starting locations and "m" comparisons needed
for each position, this results in the given time complexity.

Despite its inefficiency, the naive string matching algorithm remains useful in certain
scenarios. For instance, when the text and pattern are relatively short, its simplicity may
outweigh the performance drawbacks. Similarly, if the pattern is brief and instances of
its occurrence in the text are infrequent, the algorithm might still prove adequate.
Additionally, the algorithm serves as an approachable educational tool for introducing
the concept of string matching algorithms before delving into more efficient strategies
such as the Knuth-Morris-Pratt (KMP) algorithm or the Boyer-Moore algorithm.
However, in practical applications involving larger texts and patterns, opting for more
efficient string matching algorithms is generally advisable due to their superior runtime
performance.

Knuth-Morris-Pratt (KMP) Algorithm
The Knuth-Morris-Pratt (KMP) Algorithm is a powerful and efficient string searching
technique used to find occurrences of a pattern within a given text. It addresses the
inefficiencies of the naive string matching algorithm by employing a clever approach that
minimizes unnecessary character comparisons.

The KMP algorithm's concept revolves around utilizing the information from previous
comparisons to skip redundant checks during the matching process. It constructs a



"prefix table" or "failure function" that stores information about the pattern itself. This
table is then used to guide the algorithm's progression through the text in an intelligent
manner, avoiding unnecessary re-comparisons and thus significantly improving
efficiency.

Prefix Table and Its Role:
The prefix table is a crucial component of the KMP algorithm. It's a preprocessed array
that contains data about the pattern's internal structure. Specifically, it holds information
about the longest proper prefix (which is also a suffix) of the pattern for each position.
This information allows the algorithm to determine the maximum number of characters it
can skip ahead in the text without missing any potential match.

Consider a pattern "ABABACA". The prefix table for this pattern might look like:

Index: 0 1 2 3 4 5 6
Value: 0 0 1 2 3 0 1

Here, for each position in the pattern, the value indicates the length of the longest prefix
that matches the corresponding suffix. For instance, at index 4, the value 3 indicates
that the substring "ABA" is both a prefix and a suffix of the pattern.

Time Complexity and Advantages:
The KMP algorithm's time complexity is O(n + m), where "n" is the length of the text and
"m" is the length of the pattern. This complexity arises from the fact that each character
in the text is compared with at most one character in the pattern exactly once. The
prefix table allows the algorithm to skip unnecessary character comparisons, ensuring
that each character in the text is examined at most once during the entire matching
process.

Compared to the naive string matching algorithm, which has a time complexity of O((n -
m + 1) * m), the KMP algorithm offers substantial advantages. It shines particularly
when the pattern is long or when the text and pattern are both large. The KMP
algorithm's efficiency stems from its ability to avoid redundant character comparisons,
making it a preferred choice for real-world applications involving substantial amounts of
text processing.



In conclusion, the Knuth-Morris-Pratt algorithm's innovative use of the prefix table allows
it to efficiently search for patterns in texts by minimizing unnecessary comparisons. Its
time complexity advantage over the naive approach, especially in scenarios involving
larger inputs, underscores its importance in the realm of efficient string searching
algorithms.

Boyer-Moore Algorithm
The Boyer-Moore Algorithm is a highly efficient string searching technique that aims to
reduce the number of character comparisons required during the pattern matching
process. It achieves this by intelligently skipping sections of the text that cannot possibly
contain a match. This algorithm is particularly advantageous when dealing with large
texts and patterns, as it can significantly accelerate the search process.

Intuition and Purpose:
The fundamental idea behind the Boyer-Moore algorithm is to exploit information from
both the pattern and the text to skip sections of the text that cannot possibly contain a
match. By considering the pattern from right to left, the algorithm focuses on aligning the
pattern with the text, comparing characters in a way that eliminates unnecessary
comparisons. This approach dramatically reduces the overall number of character
comparisons required.

Bad Character and Good Suffix Rules:
The Boyer-Moore algorithm employs two main rules for character skipping: the Bad
Character Rule and the Good Suffix Rule.

1. Bad Character Rule: When a mismatch occurs at a particular position in the
pattern while aligning it with the text, the algorithm checks if the mismatched
character from the text exists in the pattern. If it does, the pattern can be shifted
to align this character with the mismatched character in the text, thus skipping
unnecessary comparisons.

2. Good Suffix Rule: If a mismatch occurs, this rule helps to determine if there is a
prefix in the pattern that matches the suffix from the current position onward. If
such a prefix exists, the pattern can be shifted to align this prefix with the suffix in
the text, again avoiding unnecessary comparisons.



Performance Comparison with KMP:
Compared to the Knuth-Morris-Pratt (KMP) algorithm, the Boyer-Moore algorithm often
offers better performance in certain scenarios. While both algorithms are efficient,
Boyer-Moore has an advantage in cases where the pattern is long and the alphabet (set
of possible characters) is large. The reason is that Boyer-Moore's character skipping
rules allow for larger shifts in the pattern, resulting in fewer comparisons.

In scenarios where the pattern contains repetitive segments or is significantly longer
than the text being searched, Boyer-Moore excels due to its ability to skip ahead more
effectively. However, the Boyer-Moore algorithm may require some preprocessing time
to build data structures used for character skipping, which can impact its efficiency for
smaller patterns.

In summary, the Boyer-Moore algorithm's clever use of the Bad Character and Good
Suffix rules enables it to efficiently search for patterns in large texts. Its performance
advantage over KMP in certain cases, especially involving longer patterns and larger
alphabets, makes it a valuable tool for optimizing string searching operations.

Pattern Matching Algorithms
Pattern matching involves identifying specific character sequences, called patterns,
within larger texts. Its importance spans computer science, linguistics, bioinformatics,
and data analysis. Pattern matching efficiently detects pattern instances in text, aiding
data extraction and decision-making.

Prominent in text search, it locates patterns within extensive text bodies, e.g., words,
DNA sequences, or codes in programming scripts. Also vital in information retrieval,
web search, and databases use patterns to find relevant documents. Data parsing
extracts structured details from unstructured text, like dates, addresses, or names.

Pattern matching aids linguistic accuracy by suggesting corrections based on similar
patterns in reference dictionaries. In network security, it detects malicious patterns like
viruses. In natural language processing, it supports sentiment analysis and entity
recognition.

Genomics identifies genes and motifs. Success hinges on efficient algorithms.
Advanced ones like KMP, Boyer-Moore, and Aho-Corasick optimize pattern matching,
reducing character comparisons and enhancing search times across domains.



Rabin-Karp Algorithm
The Rabin-Karp Algorithm stands as a sophisticated technique for efficient string
searching, harnessing the power of hashing to pinpoint occurrences of a pattern within
extensive texts. It serves as a potent solution to the pattern matching problem by
converting both the pattern itself and sections of the text into numerical hash values.
This strategy enables rapid comparisons and substantially diminishes the need for
time-consuming character-by-character examinations.

Hashing Concept:
At the heart of the Rabin-Karp algorithm lies a clever concept centered on the
conversion of characters into numerical values through a hash function. These hash
values are then employed to facilitate comparisons between the pattern and various
substrings of the text. The algorithm leverages these hash-based evaluations to swiftly
ascertain the presence of a possible match without the necessity for directly inspecting
all individual characters.

Reducing Character Comparisons:
The algorithm's noteworthy advantage resides in its capacity to swiftly discard irrelevant
substrings. Rather than embarking on character-to-character matching, the Rabin-Karp
algorithm harnesses hash-based comparisons to promptly identify potential matches.
When the hash value of the current text substring aligns with the hash value of the
pattern, it signifies a plausible match. Conversely, in cases of hash mismatch, the
algorithm promptly shifts its focus to the next substring, effectively sidestepping the
need for extensive character-based comparisons.

Handling Hash Collisions:
The challenge of hash collisions, wherein distinct inputs yield identical hash values, is a
noteworthy concern in hashing-based approaches. The Rabin-Karp algorithm takes a
thoughtful approach to this issue. It acknowledges that a hash collision doesn't
necessarily indicate an actual pattern match. To address this, the algorithm implements
a rolling hash mechanism. This technique involves dynamically updating the hash value
as the algorithm progresses through the text. By incorporating this adaptive strategy, the
Rabin-Karp algorithm significantly mitigates the possibility of false positives stemming
from hash collisions.



In scenarios where hash collisions warrant careful consideration, techniques such as
prime number modulo operations and double hashing can be implemented to optimize
the hash function's distribution, thereby diminishing collision probabilities.

In summation, the Rabin-Karp Algorithm's innovative use of hashing serves as a
catalyst for efficient pattern matching by transforming characters into hash values. This
transition accelerates comparisons, minimizes character-level examinations, and
underscores its efficacy in locating patterns within texts. This algorithm proves
especially valuable in scenarios necessitating swift searches across extensive texts,
making it an indispensable tool in the realm of pattern matching.

Aho-Corasick Algorithm
The Aho-Corasick Algorithm is a powerful solution for searching multiple patterns
simultaneously in a given text. Unlike other algorithms that focus on one pattern at a
time, Aho-Corasick efficiently identifies occurrences of multiple predefined patterns
within a single pass through the text. This makes it particularly valuable for applications
involving keyword detection, lexical analysis, and string matching in various fields.

Trie Data Structure:
Central to the Aho-Corasick algorithm is the trie data structure, often referred to as the
Aho-Corasick trie. A trie is a tree-like structure where each node represents a character
in the pattern or text. It's constructed in a way that allows for quick navigation through
patterns and efficient pattern matching. The algorithm builds the trie by incorporating
patterns, ensuring that it captures common prefixes shared by multiple patterns.

Trie Construction:
The construction of the Aho-Corasick trie involves two main steps: adding patterns and
enhancing the trie with failure transitions. For each pattern, the algorithm traverses the
trie, adding nodes and edges to represent the pattern characters. Additionally, it adds
"failure transitions" that guide the algorithm to alternative branches in the trie when a
mismatch occurs. These transitions help prevent unnecessary backtracking and enable
efficient handling of multiple patterns.



Efficient Pattern Matching:
During the matching process, the Aho-Corasick algorithm traverses the text while
simultaneously navigating the trie. It identifies potential matches by following edges that
correspond to characters in the text. If a mismatch occurs, the algorithm employs the
failure transitions to determine the next possible state. This combination of trie
navigation and failure transitions enables efficient identification of all occurrences of the
predefined patterns in the text.

Time Complexity and Applications:
The Aho-Corasick algorithm offers a linear time complexity O(n + m + z), where "n" is
the length of the text, "m" is the total length of all patterns, and "z" is the number of
occurrences found. Its time complexity remains superior to multiple passes of
single-pattern algorithms. This efficiency renders Aho-Corasick suitable for applications
such as string analysis, lexical analysis in programming languages, intrusion detection
in network security, and DNA sequence analysis in bioinformatics.

In conclusion, the Aho-Corasick Algorithm stands as a groundbreaking approach for
simultaneously searching multiple patterns within a text. Through its trie-based structure
and efficient failure transitions, it drastically reduces computational overhead. This
makes it invaluable in various contexts, offering swift and comprehensive pattern
matching across numerous predefined patterns, and making it a cornerstone of modern
string analysis.



Longest Common Subsequence and Longest Increasing
Subsequence
Dynamic programming is a problem-solving technique widely used in computer science
and mathematics to tackle complex problems by breaking them down into smaller
subproblems. This approach emphasizes storing the results of these subproblems in a
memory structure, often an array or a table, to avoid redundant calculations and
optimize overall efficiency. Dynamic programming plays a crucial role in solving intricate
string-related problems, offering a systematic way to manage and solve challenges
involving strings, sequences, and patterns.

The significance of dynamic programming in solving complex string-related problems is
multifaceted. It provides a structured methodology to address issues that exhibit
overlapping subproblems and optimal substructure properties. Many string-related
problems involve repetitive computations, and dynamic programming efficiently handles
these repetitions by storing computed results, thereby reducing the time complexity of
the solution.

Longest Common Subsequence (LCS)
The Longest Common Subsequence (LCS) is a fundamental problem in computer
science that involves finding the longest subsequence shared between two or more
sequences, which need not necessarily be contiguous. The LCS problem holds
significance in diverse domains, such as text comparison, plagiarism detection, and
DNA sequencing.

Applications:
In text comparison, the LCS aids in identifying similarities and differences between
documents, enabling version control systems and content analysis. In DNA sequencing,
it helps align genetic sequences to identify common genetic patterns and mutations,
facilitating the understanding of genetic relationships and evolutionary processes.

Dynamic Programming Table:
To solve the LCS problem efficiently, a dynamic programming approach is employed. A
table (often referred to as the LCS table) is constructed to store intermediate results.
The rows and columns of this table correspond to characters or elements of the input



sequences. Each cell of the table contains information about the length of the LCS of
the corresponding substrings.

Construction of the Table:
The table is filled iteratively using a bottom-up approach. Starting from the base cases
(when one or both sequences are empty), the table is progressively populated by
comparing characters from the sequences. When characters match, the value in the
current cell is set to the value in the diagonal cell incremented by one. If characters
don't match, the cell value is set to the maximum of the values in the adjacent cells.

Backtracking for LCS:
Once the table is fully constructed, the LCS itself can be extracted through
backtracking. Starting from the bottom-right corner of the table, the algorithm moves
diagonally to the top-left corner. During this traversal, when the characters match, the
corresponding character is added to the LCS. The backtracking process guides the
algorithm through the table to identify the longest common subsequence.

The LCS problem's complexity is proportional to the product of the lengths of the
sequences being compared. However, dynamic programming enables an efficient
solution, which is especially crucial when dealing with large texts or DNA sequences.

The Longest Common Subsequence problem has a diverse range of applications, from
text comparison to genetic analysis. Through dynamic programming, it can be solved
efficiently by constructing a table and then backtracking to determine the actual LCS.
This approach is invaluable for identifying shared patterns and relationships within
sequences, making it a foundational tool in various fields.

Longest Increasing Subsequence (LIS)
The Longest Increasing Subsequence (LIS) problem is a fundamental challenge in
computer science that revolves around finding the length of the longest subsequence
within an array where the elements are in increasing order. This subsequence need not
be contiguous, making the problem a valuable tool for various applications in data
analysis and optimization.



Importance in Data Analysis and Optimization:
The LIS problem holds significance in various domains. In data analysis, it aids in
identifying trends and patterns within datasets, enabling better understanding and
decision-making. In optimization scenarios, it helps find optimal sequences or
configurations that adhere to certain constraints, leading to improved efficiency and
resource allocation.

Dynamic Programming Approach:
The dynamic programming approach provides an efficient solution to the LIS problem. A
dynamic programming array is constructed, where each cell stores the length of the
longest increasing subsequence ending at that particular element. This array is
iteratively filled in a bottom-up manner.

Construction of the DP Array:
For each element in the array, the algorithm checks the elements that come before it. If
the current element is greater than the previous element and its corresponding DP
value is less than the current DP value + 1, the DP value is updated to reflect the longer
subsequence ending at the current element.

Adapting Solution to Find the Actual Subsequence:
Once the DP array is complete, finding the actual LIS involves a backtracking process.
Starting from the element with the maximum DP value, the algorithm moves backwards
through the array, selecting elements that contributed to the longest increasing
subsequence. The selected elements, when reversed, constitute the actual increasing
subsequence.

The LIS problem's time complexity using the dynamic programming approach is O(n^2),
where "n" is the length of the input array. This makes it suitable for moderately sized
arrays. However, more optimized algorithms, such as the Patience Sorting algorithm or
binary search-based methods, can reduce the time complexity to O(n log n), making
them more efficient for larger arrays.

In summary, the Longest Increasing Subsequence problem plays a vital role in data
analysis and optimization, offering insights into trends and aiding in efficient resource
allocation. Through dynamic programming, the problem is efficiently solved by
constructing a DP array, and the solution can be adapted to extract the actual



increasing subsequence. Its applications extend across diverse fields, from finance to
computer graphics, highlighting its broad impact in various domains.


