
Lesson 8: Approximation Algorithms
In computer science and operations research, approximation algorithms are efficient
algorithms that find approximate solutions to optimization problems (in particular
NP-hard problems) with provable guarantees on the distance of the returned solution to
the optimal one.

Approximation algorithms naturally arise in the field of theoretical computer science as a
consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide
class of optimization problems cannot be solved exactly in polynomial time.

For example, the traveling salesman problem (TSP) is an NP-hard problem that asks for
the shortest possible route that visits a given set of cities exactly once. There is no
known polynomial-time algorithm for solving TSP exactly, but there are many
approximation algorithms that can find a solution that is guaranteed to be within a
certain factor of the optimal solution.

Approximation algorithms typically work by making a series of simplifying assumptions
about the problem. For example, in the TSP problem, an approximation algorithm might
assume that all the cities are points on a circle. This simplifying assumption allows the
algorithm to find a solution more quickly, but it also means that the solution is not
guaranteed to be optimal.

The quality of the approximation solution depends on the simplifying assumptions that
are made. In general, the more simplifying assumptions that are made, the faster the
algorithm will run, but the worse the approximation solution will be.

Approximation algorithms offer a number of benefits over exact algorithms,
including:

● They can be used to solve problems that are NP-hard and cannot be solved
exactly in polynomial time.

● They can be much faster than exact algorithms, which can be important for
large-scale problems.

● They can still produce good solutions, even if they are not optimal.

The main drawback of approximation algorithms is that they do not guarantee an
optimal solution. This means that the solution that they return may not be the best
possible solution.

Another drawback of approximation algorithms is that they can be more complex to
implement than exact algorithms. This is because they often require more sophisticated
mathematical techniques.

Approximation algorithms are a powerful tool for solving optimization problems that
cannot be solved exactly in polynomial time. They offer a number of benefits over exact
algorithms, including speed and scalability. However, they do not guarantee an optimal
solution.

Here are some examples of approximation algorithms:
● The greedy algorithm is a simple approximation algorithm that works by

repeatedly adding the most promising element to the solution.
● The local search algorithm is a more sophisticated approximation algorithm that

starts with a random solution and then iteratively improves the solution by making
small changes.

● The primal-dual algorithm is a powerful approximation algorithm that can be used
to solve a wide variety of optimization problems.

Approximation ratio and performance guarantees
In computer science, the approximation ratio of an algorithm is the ratio between the
value of the solution returned by the algorithm and the value of the optimal solution. The
performance guarantee of an algorithm is the worst-case approximation ratio over all
possible problem instances.

For example, the greedy algorithm for the minimum spanning tree problem has an
approximation ratio of 2. This means that the greedy algorithm will always return a
solution that is at most twice as expensive as the optimal solution.

The performance guarantee of an algorithm is typically expressed as a function of the
problem size. For example, the Christofides algorithm for the traveling salesman
problem has a performance guarantee of 1.5 + ε, where ε is a small constant. This
means that the Christofides algorithm will always return a solution that is within 1.5 + ε
times the cost of the optimal solution, regardless of the size of the problem.

Approximation algorithms are often used to solve optimization problems that are
NP-hard. NP-hard problems are problems that are believed to be computationally

intractable to solve exactly in polynomial time. Approximation algorithms can provide a
solution to these problems that is not optimal, but is still good enough for many practical
applications.

The approximation ratio and performance guarantee of an algorithm are important
measures of its quality. A high approximation ratio or performance guarantee means
that the algorithm is more likely to return a good solution. However, it is important to
note that even an algorithm with a good approximation ratio or performance guarantee
may not return the optimal solution.

Here are some examples of approximation ratios and performance guarantees for
some common optimization problems:

Minimum spanning tree: greedy algorithm has an approximation ratio of 2.
Traveling salesman problem: Christofides algorithm has a performance guarantee of
1.5 + ε.
Maximum satisfiability problem: local search algorithm has a performance guarantee
of 0.75.
Knapsack problem: dynamic programming algorithm has an approximation ratio of 1 -
1/e.

Greedy approximation algorithms
Greedy algorithms build up a solution piece by piece, selecting the next piece that offers
the most immediate and obvious benefit. They are easy to invent, easy to implement,
and most of the time, quite efficient. When applied to optimization problems, greedy
algorithms aim to make the locally optimal choice at each stage, with the hope of finding
the global optimum. However, they don't always produce the optimal solution, but they
can produce proximate solutions.

Some of the well-known greedy approximation algorithms are:

Activity Selection / Interval Scheduling
- Problem: Given multiple activities with start and end times, select the maximum

number of activities that don't overlap with each other.
- Greedy Choice: Always pick the next activity that finishes first, assuming it doesn't

conflict with the currently selected activities.

Fractional Knapsack Problem
- Problem: Given weights and values of n items, put these items in a knapsack of a

fixed capacity to get the maximum total value. However, you can break an item and
choose the fractional amount of it.
- Greedy Choice: Always pick the item with the maximum value per unit weight.

Prim’s and Kruskal's Algorithms for Minimum Spanning Tree
- Problem: Given a connected graph, find a tree that spans all the vertices and has

the minimum possible total edge weight.
- Greedy Choice (For Kruskal’s): Always pick the smallest edge that does not form a

cycle with the previously included edges.

Dijkstra's Algorithm for Shortest Paths
- Problem: Given a graph with positive edge weights, find the shortest path from a

source vertex to all other vertices.
- Greedy Choice: Always pick the next vertex with the smallest known distance.

Huffman Coding
- Problem: Used for lossless data compression. The idea is to assign variable-length

codes to input characters, lengths of the assigned codes are based on the frequencies
of corresponding characters.
- Greedy Choice: Always choose the two trees with the least frequencies to combine

into a new tree in the forest.

Set Cover Problem (Though the greedy solution does not always produce the
best optimal solution):
- Problem: Given a universe of elements and a collection of sets, find the minimum

number of sets such that their union is equal to the universe.
- Greedy Choice: In each step, choose the set that contains the most number of

uncovered elements.

Job Sequencing with Deadlines
- Problem: Schedule jobs in a way that they don’t overlap and bring maximum profit.
- Greedy Choice: If a job can be scheduled without conflict, then schedule it.

In some cases, greedy algorithms provide optimal solutions like in the case of Huffman
Coding, MSTs, or the fractional knapsack. In other cases, they might just be used as
approximation algorithms, providing solutions that are close to optimal. The
approximation ratio, or how close the solution is to the optimal, can sometimes be
proven mathematically for greedy algorithms.

The Set Cover problem and its approximation
The Set Cover problem is a well-known computational problem in the field of theoretical
computer science and optimization. It belongs to the class of NP-hard problems, which
means that there is no known algorithm that can solve it in polynomial time unless P =
NP. The problem is defined as follows:

Given a universe set U of n elements and a collection S of m subsets of U, where each
subset represents a "set," the goal is to find the smallest subcollection of subsets from S

that covers all
elements in U. In
other words, you
want to select the
fewest number of
sets from S such
that their union
contains all
elements in U.

Mathematically,
the problem can
be stated as
finding a
minimum-size
subcollection C⊆
S such that the
union of sets in C
covers all
elements in U.

Formally:
● Input: A universe set U of n elements, a collection S of m subsets of U.
● Output: A subcollection C⊆ S such that the union of sets in C covers all

elements in U, and |C| is minimized.

The Set Cover problem is known to be NP-hard, which means that it's unlikely to have
an efficient algorithm to solve it exactly in polynomial time. However, there are

approximation algorithms that provide solutions that are guaranteed to be close to the
optimal solution.

One such approximation algorithm is the greedy algorithm:
1. Start with an empty set C.
2. While there are uncovered elements in U:

a. Select the set from S that covers the most uncovered elements.
b. Add this set to C.
c. Remove the elements covered by this set from U.

The greedy algorithm is easy to implement and runs in polynomial time. It provides a
solution that is at most ln(n) times the optimal solution, where ln is the natural logarithm
and n is the number of elements in the universe set U.

While this is a common approach, it's important to note that the greedy algorithm
doesn't always guarantee the best possible approximation. There are other more
sophisticated approximation algorithms that provide better guarantees, such as the
LP-rounding algorithm and the primal-dual algorithm.

Overall, the Set Cover problem and its approximation algorithms are important topics in
computer science and optimization, with applications in various fields such as
operations research, network design, and resource allocation.

The Traveling Salesman Problem and approximation
techniques
The Traveling Salesman Problem (TSP) is another classic optimization problem in the
field of theoretical computer science. It's also an NP-hard problem, which means that
finding an optimal solution in
polynomial time is unlikely unless P =
NP. The TSP is defined as follows:

Given a set of cities and the
distances between each pair of
cities, the goal is to find the shortest
possible route that visits each city
exactly once and returns to the
starting city.

Mathematically, the problem can be stated as finding a permutation of cities π such that
the total distance traveled is minimized.

Formally:
● Input: A set of cities and the distances between each pair of cities.
● Output: A permutation of cities π that minimizes the total distance traveled,

starting and ending at the same city.

Because of its combinatorial nature, solving the TSP exactly for a large number of cities
becomes computationally infeasible. Therefore, various approximation techniques and
heuristics have been developed to find near-optimal solutions efficiently. Some of these
techniques include:

1. Nearest Neighbor Heuristic: This is a simple heuristic where the salesman starts from
an arbitrary city and then repeatedly chooses the nearest unvisited city to travel to next.
While this method is quick, it might not always produce good solutions.

2. Minimum Spanning Tree (MST) Heuristic: This heuristic involves constructing a
minimum spanning tree of the cities and then traversing the tree to form a TSP tour.
This approach provides a better approximation than the Nearest Neighbor heuristic.

3. Christofides' Algorithm: This algorithm provides an approximation solution with a
guarantee that the solution's length is at most 3/2 times the optimal solution length. It
combines a minimum spanning tree with additional steps to handle odd-degree vertices.

4. Lin-Kernighan Heuristic: This is an iterative improvement heuristic that starts with an
initial TSP tour and iteratively applies local optimizations to improve the tour's length.

5. Genetic Algorithms: Genetic algorithms mimic the process of natural evolution to
search for optimal solutions. They involve generating a population of possible solutions,
applying genetic operations like crossover and mutation, and selecting the best
solutions iteratively.

6. Simulated Annealing: This technique is inspired by the physical annealing process. It
involves iteratively exploring the solution space by allowing "bad" moves early in the
search and gradually reducing the acceptance of such moves over time.

7. Ant Colony Optimization: This method is inspired by the foraging behavior of ants. It
involves simulating artificial ants that construct solutions by moving between cities and
depositing pheromone trails to guide the search.

It's important to note that these techniques provide approximate solutions that might not
be optimal but are often very close to the optimal solution, especially for practical
problem instances with a large number of cities. The choice of technique depends on
factors such as problem size, computational resources, and the desired level of solution
quality.

Applications in optimization problems
Optimization problems and the techniques used to solve them have a remarkable
impact across a broad spectrum of fields, enabling more informed decision-making,
efficient resource allocation, and solutions to intricate real-world challenges. These
problems involve finding the best possible solution from a set of possible options, and
the methods applied to tackle them offer practical benefits in various domains.

In the realm of Operations Research and Logistics, optimization finds its place in
scenarios like Supply Chain Management, where it streamlines the movement of goods,
optimizes transportation costs, and manages inventory effectively. Vehicle Routing is
another area where optimization helps determine the most efficient routes for delivery
vehicles, garbage collection trucks, and other transportation endeavors. Furthermore,
optimization techniques play a pivotal role in Production Scheduling, assisting in
scheduling manufacturing processes to minimize costs, resource usage, and production
time.

Network Design and Telecommunications extensively rely on optimization techniques
for their intricate problem-solving needs. In the field of Telecommunication Network
Design, these methods aid in the strategic placement of cell towers, efficient routing of
data, and allocation of network resources. Routing and Flow Problems, fundamental in
data and goods transportation through networks, are addressed by finding optimal paths
while adhering to constraints and minimizing costs.

Finance and Portfolio Management leverage optimization in vital areas like Portfolio
Optimization, which involves selecting the optimal mix of financial assets to maximize
returns while keeping risks in check. Additionally, optimization plays a pivotal role in

Option Pricing, which aids in pricing financial derivatives and options, thus optimizing
trading strategies for better outcomes.

Engineering and Manufacturing benefit immensely from optimization, with applications
ranging from Structural Design, where optimal designs of structures are achieved to
ensure stability while minimizing material usage, to Process Optimization, which
enhances industrial processes, reduces waste, and cuts production costs.

The fusion of optimization with Machine Learning and Data Science is evident in tasks
like Hyperparameter Tuning, which seeks the optimal configuration of machine learning
algorithms for improved model performance. Feature Selection, another significant area,
focuses on identifying the most relevant features for a model to enhance accuracy and
mitigate overfitting.

In the Healthcare sector, optimization finds its place in critical aspects like Treatment
Planning, where it optimizes treatment plans for radiation therapy or surgeries to
minimize harm to healthy tissues. Resource Allocation also benefits from optimization,
aiding in the effective allocation of medical resources such as hospital beds or organ
transplants, thereby maximizing patient outcomes.

Fields like Telecom and Network Management tap into optimization for tasks such as
Bandwidth Allocation, which ensures optimal distribution of network bandwidth among
various users or applications to optimize network performance. Data Compression is
another area where optimization techniques are crucial, as they aim to achieve high
compression ratios while preserving data quality.

Even the Agriculture sector benefits from optimization, particularly in areas like Crop
Planning, where it optimizes crop rotation, planting schedules, and resource allocation
to maximize yields and minimize costs. Moreover, in Irrigation Management,
optimization techniques come into play to optimize water distribution in agricultural
fields, conserving water and enhancing crop growth.

Lastly, Transportation and Urban Planning harness the power of optimization to address
urban traffic congestion through strategic traffic light timing and route optimization,
ensuring smoother traffic flow. Public Transportation Planning also benefits from
optimization by designing efficient public transportation routes and schedules to serve
commuters optimally.

In essence, the applications of optimization problems and techniques are incredibly
diverse, contributing significantly to efficient decision-making, optimal resource
utilization, and innovative solutions across a wide array of industries and sectors.

