
Lesson 7: Integer Programming
Integer Programming (IP) is a branch of mathematical optimization that deals with
optimization problems where the decision variables are required to take on integer
values. In mathematical optimization, the goal is to find the best solution, often defined
as the one that maximizes or minimizes an objective function, while satisfying a set of
constraints.

In Integer Programming, the key distinction from other optimization methods like Linear
Programming (LP) is that the variables are constrained to be integers, rather than being
allowed to take any real value within a certain range. This integer constraint introduces
an additional layer of complexity to the optimization problem, as it often leads to a more
challenging and discrete solution space.

There are different types of integer programming problems based on the characteristics
of the variables:

Pure Integer Programming (PIP): In a pure integer programming problem, all decision
variables are required to be integers. This often leads to more difficult problems to solve
since the feasible solution space becomes a discrete lattice rather than a continuous
region.

Mixed Integer Programming (MIP): In a mixed integer programming problem, only
some of the decision variables are constrained to be integers, while others can take
continuous values. This is a more general form of integer programming and is
commonly encountered in real-world applications.

Integer programming problems arise in various practical situations where decisions
need to be made among discrete alternatives. Examples include project scheduling,
portfolio optimization, production planning, network design, and more. In these
scenarios, the discrete nature of decisions may reflect real-world constraints or
requirements.

Solving integer programming problems can be computationally challenging, especially
when the problem size grows. Traditional linear programming solvers are not directly
applicable to integer programming due to the discrete nature of the solution space.
Instead, specialized algorithms like branch-and-bound, branch-and-cut, and
cutting-plane methods are used to systematically explore the integer solution space and
find the optimal or near-optimal solutions.



Integer programming has a wide range of applications across industries and domains,
from supply chain management and logistics to finance, manufacturing,
telecommunications, and more. It provides a powerful framework for making decisions
that involve discrete choices and optimization objectives.

Formulating IP problems
Formulating an Integer Programming (IP) problem involves structuring a real-world
problem in terms of decision variables, an objective function, and constraints while
accounting for the integer requirements. Here's a step-by-step guide to formulating an
IP problem:

Define Decision Variables: Identify the key decisions you need to make in your
problem. Assign decision variables to represent these decisions. These variables can
be binary (taking values 0 or 1) or general integer variables.

Specify Objective Function: Determine what you want to optimize. It could be a
quantity to maximize (e.g., profit, efficiency) or minimize (e.g., cost, distance). Express
this as a linear combination of your decision variables.

Set Constraints: Define the conditions or limitations that your solution must satisfy.
Constraints can be inequalities or equalities involving your decision variables. These
constraints model the real-world limitations and requirements of your problem.

Incorporate Integer Constraints: Identify which decision variables must take integer
values. If all decision variables must be integers, you have a pure integer programming
problem. If only some variables need to be integers, you have a mixed-integer
programming problem. Add these integer constraints to your formulation.

Formulate the Problem Mathematically: Combine the decision variables, objective
function, constraints, and integer requirements into a mathematical model. This model
should accurately represent your real-world problem.

Example Formulation:
Let's say you're running a manufacturing business and need to decide how many units
of two products, A and B, to produce to maximize your profit. Each unit of A yields a



profit of $10, and each unit of B yields a profit of $15. However, due to limited
resources, you can only produce a total of 100 units.

● Decision variables: Let x be the number of units of A to produce, and y be the
number of units of B to produce.

● Objective function: Maximize 10x+15y (profit).
● Constraints: x >= 0, y >= 0 (production quantities must be non-negative), and

x+y <= 100 (resource constraint).

If you want to additionally ensure that the production quantities are integers (assuming
you can't produce fractional units), you'd have integer constraints: x and y are integers.

1. Solving the Formulation: Once you have the mathematical model, you can use
specialized integer programming solvers to find the optimal solution. These
solvers explore the solution space systematically, considering various
combinations of the decision variables while adhering to the constraints.

2. Interpreting Results: The solver will provide you with the optimal values of the
decision variables that maximize or minimize the objective function while
satisfying the constraints. Interpret these results in the context of your original
problem to make informed decisions.

Remember that formulating an IP problem effectively requires a deep understanding of
the real-world problem you're trying to solve. It's crucial to accurately represent the
problem's constraints, objectives, and integer requirements to ensure the solution is
meaningful and applicable.

Branch and bound algorithm
The Branch and Bound algorithm is a widely used technique for solving optimization
problems, especially Integer Programming (IP) problems. It systematically explores the
solution space of a problem by dividing it into smaller subproblems, effectively creating
a tree-like structure. This algorithm aims to find the optimal solution by pruning
branches that cannot lead to better solutions than those already found.

Here's how the Branch and Bound algorithm works:



Initial Relaxation: Begin by solving the relaxation of the original problem, which
typically means ignoring the integer constraints. For an IP problem, this would involve
solving the corresponding Linear Programming (LP) problem.

Solution and Bound: Obtain a feasible solution to the relaxed problem, along with an
upper bound on the optimal solution's value. This upper bound is typically the objective
function value of the relaxed solution.

Integer Feasibility Check: Check if the relaxed solution satisfies the integer
constraints. If it does, you have a potentially optimal integer solution. Update the best
solution found if this solution has a better objective value.

Branching: If the relaxed solution is not integer-feasible, branch by creating two or
more subproblems. Choose one of the non-integer variables in the relaxed solution and
create subproblems by imposing additional constraints on that variable: one subproblem
with the variable rounded down to the nearest integer and another with the variable
rounded up. These subproblems are added to the exploration queue.

Pruning: During the exploration, if you determine that a subproblem's solution cannot
possibly yield a better solution than the best one found so far (either due to its relaxed
objective value being worse than the current best solution or due to infeasibility), you
can prune that branch. This is the "bound" aspect of the algorithm.

Exploration and Backtracking: Repeat steps 2 to 5 for each subproblem in the queue.
This process continues recursively until either the subproblems are solved to optimality
(integer solutions found) or all subproblems are pruned.

Optimality and Termination: Once all subproblems are solved, the best integer
solution found is the optimal solution to the original IP problem. The algorithm
terminates when no more subproblems are left to explore.

The key strengths of the Branch and Bound algorithm are its ability to systematically
explore the solution space, its adaptability to various optimization problems, and its
efficiency in finding optimal solutions for integer programming problems. However, it can
become computationally intensive as the problem size increases, especially for complex
and large-scale problems.

In more advanced forms of the algorithm, techniques like "branch-and-cut" are used to
strengthen the relaxation and further prune the solution space, improving the algorithm's
efficiency.



Applications of integer programming
Integer Programming (IP) finds its applications across diverse fields where problems
involve discrete choices and optimization objectives. In manufacturing, it aids in
optimizing production schedules by efficiently allocating resources within capacity
constraints. Similarly, IP addresses challenges in supply chain management and
logistics, aiding in inventory control to meet demand while minimizing costs, and
optimizing delivery routes to minimize travel time.

Finance and investment also benefit from IP's prowess. It helps investors allocate
resources across various assets for an optimal portfolio that balances risk and return. In
telecommunications and networking, IP plays a vital role in designing efficient
communication networks by minimizing costs or maximizing data transmission
efficiency. Furthermore, it aids in allocating frequencies for transmitters to minimize
interference.

In project management, IP assists in resource allocation, ensuring tasks are assigned
optimally to meet project goals while minimizing costs. In marketing, it guides the
allocation of advertising budgets to different media channels for maximum reach and
impact. The energy sector benefits from IP for power generation scheduling, optimizing
the mix of energy sources to meet demand and minimize costs. Similarly, it assists in
efficiently distributing water in utility networks while minimizing energy consumption.

Healthcare and medicine also find value in IP. It supports treatment planning by
optimally allocating medical resources to patients, ensuring the best possible outcomes.
Even drug discovery benefits from IP as it aids in designing molecular structures for
new drugs to maximize effectiveness. In agriculture, IP aids in planning crop rotations to
optimize yield while maintaining soil health and formulating livestock feed diets to meet
nutritional requirements with minimal costs.

These examples provide a glimpse into the diverse applications of Integer
Programming. Essentially, whenever a problem involves discrete decisions and
optimization objectives, IP can offer valuable solutions. As computational techniques
continue to evolve, the reach and impact of IP are expected to expand further, finding
relevance in even more fields and industries.


