
Lesson 6: Intermediate Code Generation
Intermediate Representations (IR) are essential constructs within the realm of compilers
and programming languages that significantly impact the efficiency and optimization of
code generation processes. These representations act as a vital intermediary layer,
positioned between the high-level source code authored by developers and the
low-level machine code that computers execute. IR essentially functions as a structured
and standardized format that captures the essence of a program's source code, making
it amenable to thorough analysis, optimization, and transformation while abstracting
away the syntactic intricacies of the source language.

The primary role of Intermediate Representations in the context of code generation is to
establish a harmonious bridge between the language-agnostic nature of high-level
programming languages and the machine-specific demands of executable code. In
doing so, they facilitate cross-platform compatibility by enabling compilers to convert IR
into machine code tailored to different architectures. This ability to translate IR into
architecture-specific code is particularly advantageous when targeting various hardware
platforms.

However, the importance of IR extends beyond mere translation. One of its most critical
functions lies in code optimization. This phase involves refining the code to enhance its
efficiency, performance, and execution speed. The use of IR for optimization purposes
allows compilers to apply a wide range of sophisticated techniques, such as loop
unrolling, function inlining, constant propagation, and dead code elimination. IR acts as
a canvas on which these optimizations can be seamlessly implemented, providing a
unified representation for the application of diverse optimization strategies.

Additionally, IR serves as a simplification mechanism. It takes intricate high-level
language constructs and distills them into fundamental operations that more closely
align with the capabilities of a computer's hardware. This simplification not only
facilitates efficient code generation but also assists in subsequent optimization
endeavors.

Furthermore, Intermediate Representations are instrumental in enabling static analysis,
a crucial aspect of the compilation process. Through IR, compilers can scrutinize the
code to identify variables that can be computed at compile time, pinpoint areas of dead
code that have no impact on the program's output, and analyze the scope and lifetime
of variables. This analysis lays the groundwork for subsequent transformations that can
drastically improve code efficiency.



IR also empowers compilers to apply specialized optimizations that are finely tuned to
the target architecture. By abstracting the complexities of these architecture-specific
optimizations from the original source code, IR ensures that code remains adaptable to
a range of hardware without requiring manual intervention.

In summary, Intermediate Representations play a pivotal role in modern compiler
technology by acting as a conduit for efficient code generation and optimization. Their
ability to bridge the gap between high-level programming languages and low-level
machine code while providing a unified foundation for optimization and analysis
processes underscores their significance in the realm of programming languages and
software engineering.

Advantages of using an abstract representation before generating target code:
Utilizing an abstract representation before generating target code offers a multitude of
advantages that significantly enhance the efficiency, portability, and quality of the code
generation process. This practice, often achieved through Intermediate Representations
(IR), introduces several key benefits:

1. Language Independence and Portability: An abstract representation
decouples the high-level source code from the specifics of the target machine
architecture. This independence allows the same source code to be translated
into machine code suitable for different platforms, promoting code portability and
minimizing the effort required to adapt programs to various environments.

2. Optimization: The abstract representation serves as a platform for applying a
wide range of optimization techniques that can dramatically enhance the
performance of the generated code. Since optimization can be complex and
architecture-dependent, the use of an abstract representation allows for
optimization strategies to be applied uniformly and tailored to the specific needs
of the target platform.

3. Simplification and Abstraction: High-level programming languages often
include complex language constructs that do not map directly to machine-level
operations. Abstract representations break down these constructs into simpler,
more fundamental operations that are easier to work with during code
generation. This simplification facilitates more efficient translation and
optimization processes.



4. Analysis and Debugging: Abstract representations enable advanced static
analysis of the code, allowing compilers to detect errors, identify dead code, and
make predictions about program behavior. This analysis assists in identifying
bugs, improving code quality, and enhancing the overall reliability of the
generated code. Furthermore, abstract representations can be associated with
the original source code, aiding in debugging by providing a link between the
optimized code and its source.

5. Uniformity of Transformations:When transforming the code to enhance its
efficiency, an abstract representation provides a common ground for applying a
variety of transformations such as loop optimizations, constant folding, and
function inlining. This uniform approach ensures that transformations are
consistent across different parts of the codebase, resulting in a more coherent
and optimized final product.

6. Separation of Concerns: By introducing an abstract representation, the
concerns of code generation, optimization, and analysis are compartmentalized.
This separation allows each aspect of the compilation process to be tackled
independently and optimized for its specific purpose. As a result, changes or
improvements in one area (e.g., optimization strategies) do not necessarily
require modifications to other areas (e.g., source code).

7. Future Adaptability: An abstract representation provides flexibility for adapting
to evolving hardware architectures and programming paradigms. As new
technologies and hardware emerge, compilers can be updated to generate code
that leverages these advancements, all while maintaining the compatibility of the
original source code.

8. Performance: By applying a sequence of optimizations at the abstract level,
compilers can achieve higher levels of optimization than might be feasible when
working directly with the source code. This results in improved runtime
performance of the generated code.

The use of an abstract representation before generating target code, exemplified by
Intermediate Representations, brings substantial advantages to the code generation
process. It enables cross-platform compatibility, empowers optimization strategies,
simplifies complex language constructs, enhances analysis and debugging capabilities,
fosters uniformity in code transformations, and ensures adaptability to future



technological advancements. This approach contributes to the creation of efficient,
portable, and high-quality software systems.

Translation to Three-Address Code
Three-address code is an essential intermediate representation used in compilers to
bridge the gap between high-level programming languages and machine code. It
provides a structured and simplified format that aids in code generation, optimization,
and analysis. Let's delve deeper into its features and characteristics:

1. Basic Operations: Three-address code uses a set of simple operations that
involve up to three operands. These operations are usually arithmetic (add,
subtract, multiply, divide), assignment, comparison, and memory-related
operations.

2. Temporary Variables: Temporary variables are introduced to store intermediate
results. These variables are typically denoted by t1, t2, and so on. They serve as
placeholders for holding values during computations.

3. Assignment: Assignments are a fundamental operation in three-address code.
They assign the result of an expression to a temporary variable. For example, t1
= x + y signifies that the value of x + y is stored in temporary variable t1.

4. Control Flow: Three-address code can represent control flow constructs like
conditional statements (if, else) and loops (while, for). Labels and goto
statements are used to control the flow of execution.

5. Expression Trees: Complex expressions in high-level languages are often
represented as expression trees. In three-address code, these trees are broken
down into simpler expressions involving temporary variables. For instance, the
expression tree for a + (b * c) can be represented as t1 = b * c followed by t2 = a
+ t1.

6. Optimization: Three-address code serves as a platform for optimization
techniques. Optimizations like constant folding, common subexpression
elimination, and dead code elimination can be more easily applied to this
simplified representation.



Mapping High-Level Language Constructs to Three-Address Code
Instructions:

1. Assignment:

2. Arithmetic Expressions:



3. Conditional Statement:

4. Loop Statement:



5. Function Call:

6. Array Access:

These mappings demonstrate how complex high-level language constructs can be
systematically translated into simpler three-address code instructions, utilizing
temporary variables and basic operations. This translation process preserves the



essence of the original code while providing a structured representation for subsequent
compiler stages.

Building Basic Blocks and Control Flow Graphs
In computer programming and compiler theory, a basic block is a fundamental unit of
code within a program's control flow. It is a sequence of consecutive instructions that
have the property that, once the first instruction is executed, all subsequent instructions
are executed in order without any branches, jumps, or other control flow instructions in
between. In other words, a basic block is a maximal sequence of instructions with a
single entry point at the beginning and a single exit point at the end.

Basic blocks play a crucial role in control flow analysis, which is the process of
analyzing and understanding the structure of a program's control flow graph. Control
flow analysis helps compilers and other tools understand how the program's instructions
are executed and how they interact with one another. Here's how basic blocks
contribute to control flow analysis:

Simplification: By breaking down a program into basic blocks, the complexity of
analyzing control flow is reduced. Each basic block can be analyzed independently,
simplifying the understanding of the program's behavior.

Control Flow Graph Construction: Basic blocks serve as nodes in constructing a
control flow graph. The control flow graph represents the flow of control between
different parts of the program. The basic blocks are connected based on the potential
control flow transfers, such as branches and jumps.

Analysis of Dependencies: Basic blocks aid in identifying dependencies between
instructions. This is important for various optimizations, such as instruction scheduling,
where the order of execution of instructions can impact performance.

Optimization Opportunities: By analyzing basic blocks, compilers can identify
opportunities for optimization at a finer level. For example, certain optimization
techniques can be applied within a basic block to improve code efficiency.

Code Generation: Basic blocks provide a structured way to generate machine code.
Compilers can translate each basic block into a sequence of machine instructions,
considering the control flow transfers between blocks.



Loop Detection: Basic blocks are essential for detecting loops in the control flow
graph. Loops can be identified by identifying back edges in the graph, which connect a
block to an earlier block in the execution sequence.

Dead Code Elimination: Basic blocks help identify dead code—code that will never be
executed due to certain conditions. This is vital for removing unnecessary instructions
and improving the overall efficiency of the program.

In summary, basic blocks are fundamental building blocks of a program's control flow.
They provide a structured and simplified way to analyze and optimize the flow of
execution within a program. Control flow analysis based on basic blocks is a key step in
the compilation process and is essential for producing efficient and well-performing
executable code.

Constructing control flow graphs to represent the control flow structure
of a program
Constructing a control flow graph (CFG) is a crucial step in analyzing and understanding
the control flow structure of a program. A control flow graph visually represents how
different parts of a program are connected based on control flow transfers, such as
branches, loops, and function calls. Here's how you can construct a control flow graph
to represent the control flow structure of a program:

Identify Basic Blocks: Start by dividing the program's code into basic blocks. As
mentioned earlier, a basic block is a sequence of consecutive instructions with a single
entry point and a single exit point. Typically, a basic block begins with the first instruction
after a control flow transfer (e.g., a branch, jump, or function call) and continues until the
next control flow transfer.

Identify Control Flow Transfers:Within each basic block, identify the control flow
transfers, such as conditional branches and jumps, that can lead to other parts of the
program. These control flow transfers determine the connections between different
basic blocks.

Create Nodes: Create a node for each basic block in the control flow graph. Each node
represents a basic block, and it contains the instructions within that block.



Add Edges: Connect the nodes with edges to represent the control flow transfers. If a
basic block ends with a control flow transfer that leads to another basic block, draw an
edge from the ending block to the target block. If there are multiple possible targets
(e.g., due to different branches), create edges to all relevant target nodes.

Special Edges: Special types of edges might be added for exceptional control flow,
such as function calls and returns. These are often represented using special symbols
or labels.

Loop Detection: Identify loops within the control flow graph by detecting back edges. A
back edge connects a basic block to a previous block in the execution sequence,
indicating the presence of a loop.

Function Calls: If the program contains function calls, you can represent them by
creating separate nodes for the called functions and connecting them appropriately
within the control flow graph.

Entry and Exit Nodes: Add special entry and exit nodes to represent the start and end
of the program's execution. These nodes may not directly correspond to basic blocks
but are useful for visualizing the complete control flow.

Annotations: Optionally, you can annotate the edges with information about the control
flow transfer conditions, such as the conditions for branching or looping.

Visual Representation: Once all nodes and edges are added, draw the control flow
graph on paper or using a graphical tool. The graph should clearly show the
connections between different parts of the program based on control flow transfers.

By constructing a control flow graph, you gain a visual representation of the program's
control flow structure. This visualization is invaluable for understanding how the
program's instructions interact and for performing various analyses and optimizations
during the compilation process.


