
Lesson 6: Greedy Algorithms and Design Principles
A greedy algorithm is an approach used in computer science to solve optimization
problems. It involves making choices that seem best at each step of the problem-solving
process, without worrying about the potential consequences down the line. This method
aims to find a solution that is optimal in a local sense, hoping that these local choices
will ultimately lead to a global optimum. Greedy algorithms are particularly useful when
dealing with problems where finding the best possible solution from a set of options is
essential.

These algorithms are characterized by a few key features. Firstly, they make what's
called a "greedy choice" at each step. This means that they select the most favorable
option available at that specific moment. This choice should be feasible and help to
break down the original problem into smaller, more manageable subproblems.
Importantly, once a choice is made, it's considered final and there's no going back to
revise it, which is known as the "greedy property."

Another crucial aspect is the concept of "optimal substructure." This means that the
larger problem can be broken down into smaller subproblems, and solving these
subproblems optimally can lead to an optimal solution for the overall problem. However,
it's important to note that although greedy algorithms are often efficient, they don't
always guarantee finding the best possible solution for every problem. Instead, they
frequently offer good approximations for specific types of problems.

Several real-world examples illustrate the use of greedy algorithms. One instance is the
"coin change problem," where the goal is to make change for a given amount using the
fewest coins possible. Another is the "fractional knapsack problem," in which a set of
items with varying weights and values need to be selected for a knapsack with a
maximum weight capacity, aiming to maximize total value.

Despite their advantages, greedy algorithms also come with limitations. They don't
guarantee the best result in all cases, which is a significant drawback. Careful
consideration is needed to ensure that the locally optimal choices made at each step
align with the desired global outcome. Analyzing the correctness and optimality of
greedy algorithms can be complex and requires a good understanding of the problem at
hand.

In summary, greedy algorithms are a practical approach in computer science to tackle
optimization problems. While they might not always deliver the globally optimal solution,



they are valuable for their simplicity and efficiency in solving specific types of problems
that adhere to the greedy choice and optimal substructure properties.

Greedy choice property and optimal substructure
The "greedy choice property" and "optimal substructure" are fundamental concepts that
underlie the effectiveness of greedy algorithms in solving optimization problems.

The greedy choice property refers to the principle that a greedy algorithm makes
decisions based on what seems best at the current step, without considering the future
consequences of those choices. In other words, it chooses the most favorable option
available at the moment, hoping that this local choice will lead to a globally optimal
solution. This property simplifies the decision-making process and is a hallmark of
greedy algorithms.

On the other hand, optimal substructure is a property that allows a problem to be
broken down into smaller, related subproblems. Solving these subproblems optimally
contributes to finding an optimal solution for the original problem. This property is crucial
for building a solution incrementally by making locally optimal choices. The optimal
substructure property enables the recursive nature of many greedy algorithms, where
solving smaller subproblems leads to solving the larger problem.

The interaction between these two properties is what empowers greedy algorithms to
find approximate solutions efficiently. The greedy choice property guides the algorithm
to make immediate choices that improve the solution step by step. Meanwhile, the
optimal substructure property ensures that these local choices collectively contribute to
an overall optimal solution.

However, it's important to note that not all problems possess these properties, making
them unsuitable for greedy algorithms. In some cases, making decisions solely based
on immediate benefits may lead to incorrect or suboptimal solutions. Therefore, careful
consideration is necessary when applying greedy algorithms, especially in scenarios
where the problem lacks the necessary properties for this approach to be effective.

The greedy choice property and optimal substructure are two core concepts that define
the behavior of greedy algorithms. The former guides the algorithm to make locally
optimal choices at each step, while the latter allows the problem to be divided into
smaller subproblems whose solutions contribute to an overall optimal solution. These



properties, when present, make greedy algorithms a powerful tool for solving
optimization problems efficiently.

Examples of greedy algorithms
Certainly, here are explanations of the examples you mentioned: the Coin Change
Problem, Huffman Coding, and the Activity Selection Problem, all of which can be
solved using greedy algorithms.

Coin Change Problem:
The Coin Change Problem is a renowned optimization challenge with practical
implications in various financial scenarios, such as currency conversion and
transactions. It involves working with a set of distinct coin denominations and a
predefined target amount. The objective here is to develop a strategy that efficiently
minimizes the number of coins needed to accurately represent the specified amount.

This problem holds substantial relevance in everyday financial operations where
efficient algorithms for making change are crucial. By delving into the intricacies of the
Coin Change Problem, we gain insights into the significance of algorithmic optimization
in addressing real-world currency-related tasks.

Problem Setting and Objective
At its core, the problem entails an array of coin denominations, each signifying a distinct
value (e.g., 1 cent, 5 cents, 25 cents), alongside a given target amount. The primary
goal is to determine the smallest possible number of coins required to represent the
target amount accurately using the provided denominations.

Greedy Algorithm Approach
A pragmatic approach to solving the Coin Change Problem is by employing a greedy
algorithm. These algorithms make decisions at each step that seem optimal locally, with
the anticipation that these choices will collectively yield a globally optimal outcome. In
the context of this problem, the "greedy choice" entails consistently selecting the highest
coin denomination that doesn't exceed the remaining target amount. This strategy
prioritizes coins with the highest values.

The procedural breakdown is as follows:



1. Initiate the process by arranging the coin denominations in descending order,
streamlining the selection of the highest-value coin.

2. Establish a variable, often termed "count," to monitor the count of coins used.
3. Begin with the highest coin denomination. Subtract its value from the target

amount.
4. Repeat this sequence iteratively: at each step, opt for the largest coin

denomination that fits within the remaining target amount, deduct its value, and
increment the coin count.

5. Persist in this sequence until the target amount reaches zero.

The inherent advantage of this approach lies in its natural inclination to exhaust
higher-value coins before resorting to smaller denominations. This "largest first" strategy
significantly reduces the total number of coins needed to reach the target amount.

Nonetheless, it's essential to acknowledge that while the greedy approach works well
for conventional coin systems, it might not universally apply. Instances involving unique
coin sets or specific denominations might necessitate more intricate algorithms like
dynamic programming to ensure an optimal solution. Therefore, while the greedy
approach offers an efficient solution to the Coin Change Problem, its suitability should
be assessed based on the specifics of the coin denominations and the problem context
in question.

Huffman Coding:
Huffman Coding stands as a cornerstone compression technique, playing a pivotal role
in data encoding and transmission efficiency. This method undertakes the task of
encoding characters from a data source in a manner that curtails the total bit count
required. The outcome is a compact representation that greatly diminishes data size,
making storage and transmission more resource-efficient.

Compression and Efficient Data Handling
In various practical scenarios, data files can be voluminous, making efficient storage
and transmission paramount. Huffman Coding tackles this challenge by assigning
variable-length binary codes to characters based on their occurrence frequencies in the
source data. Characters that appear frequently receive shorter codes, optimizing the
overall encoding process. This approach curtails the need for uniform-length codes and
tailors the encoding scheme to the inherent distribution of characters within the data.

Greedy Approach and Optimal Compression



The central tenet of Huffman Coding is its utilization of a greedy algorithmic strategy.
This strategy pursues immediate optimal choices in the hope of attaining a globally
efficient outcome. The process initiates by assembling a priority queue containing
individual characters and their respective frequencies. The algorithm then proceeds to
iteratively combine the two least frequent characters into a single node of a binary tree,
with the combined frequency serving as the frequency of the new node. This approach
is repeated until only one node remains, resulting in a binary tree known as the Huffman
Tree.

Optimal Coding Scheme
The brilliance of the Huffman Tree lies in its construction that ensures an optimal coding
scheme. The path from the root of the tree to any character's leaf node corresponds to
the binary code assigned to that character. Characters that occur more frequently are
positioned higher in the tree, leading to shorter codes, while infrequent characters are
located deeper in the tree, yielding longer codes. This design harmonizes with the goal
of minimizing the total number of bits required for encoding the entire dataset.

Huffman Coding exemplifies the synergy of algorithmic ingenuity and data efficiency. By
strategically tailoring codes to match the character distribution, this technique delivers
substantial reductions in data size, proving indispensable in various applications ranging
from data compression to network transmission. While its greedy approach might not
always yield the globally optimal solution, in the case of Huffman Coding, it undeniably
succeeds in producing a coding scheme that remarkably compresses data while
maintaining the capacity for accurate decoding.

Activity Selection Problem:
The Activity Selection Problem is a pivotal optimization puzzle that revolves around
efficiently choosing a subset of activities from a provided collection, each with defined
start and finish times. The primary objective is to construct the most extensive possible
set of non-overlapping activities, thus optimizing the utilization of time slots.

Optimizing Activity Scheduling:
In various real-world scenarios, such as conference scheduling or project management,
the selection of activities to maximize efficiency while preventing overlap is critical. The
Activity Selection Problem serves as a formalized representation of this challenge. By
solving it, we can effectively determine the most strategic way to schedule events,
tasks, or assignments, optimizing resource allocation and productivity.



Greedy Algorithm Approach:
A common approach to addressing the Activity Selection Problem employs a greedy
algorithm. Greedy algorithms capitalize on making locally optimal decisions at each
step, with the overarching goal of achieving an optimal global outcome. In this context,
the greedy choice involves arranging activities in order of their finish times. This
arrangement facilitates the selection of activities with the earliest finishing times that do
not clash with previously chosen activities.

The procedure unfolds as follows:
1. Sort the activities based on their finish times in ascending order.
2. Initialize a solution set to store the selected activities.
3. Begin with the activity that concludes earliest (lowest finish time) and add it to the

solution set.
4. Iterate through the remaining activities: for each, select it if its start time is later

than or equal to the finish time of the last selected activity.
5. Continue this process until all activities have been considered.

Optimal Time Slot Utilization:
The essence of the greedy approach here lies in its focus on immediate efficiency. By
prioritizing activities that conclude earlier, the algorithm ensures that each chosen
activity doesn't infringe upon the time slot of its predecessors. This leads to an
assembly of non-overlapping activities, ultimately maximizing the utilization of available
time intervals.

While the greedy approach is effective for this particular problem, its applicability
depends on the problem's characteristics. In cases where the activities have complex
dependencies or intricate constraints, alternative strategies like dynamic programming
might be more suitable. Nonetheless, for scenarios where the objective is to make the
most of available time slots through a straightforward approach, the Activity Selection
Problem stands as a quintessential example of the power of greedy algorithms.

These examples illustrate how greedy algorithms work by making locally optimal
choices at each step. However, it's important to note that while greedy algorithms work
for these specific problems, they might not be suitable for all optimization problems.
Careful consideration of the problem's characteristics and whether it exhibits the greedy
choice property and optimal substructure is crucial when deciding whether to use a
greedy algorithm.



When to use greedy algorithms and their limitations

When to Use Greedy Algorithms:
Greedy algorithms prove their worth in addressing optimization challenges that align
with specific problem characteristics. Here are instances where the application of a
greedy approach is advantageous:

● Greedy Choice Property: Greedy algorithms shine when the notion of making
locally optimal choices at each step contributes to an optimal global solution.
Problems that can be dissected into smaller subproblems, with each
subproblem's solution playing a role in achieving the overall optimal solution,
often align with the greedy approach.

● Optimal Substructure: A fertile ground for greedy algorithms is found in problems
that can be partitioned into smaller subproblems, where the pursuit of an optimal
solution for these subproblems harmonizes with the optimal solution for the larger
problem.

● Immediate Selection Requirements: Situations that necessitate prompt
decision-making, with no need to revisit past choices, are well-suited for greedy
algorithms. These algorithms boast efficiency and are particularly handy when
swift decisions are pivotal.

● Simplicity in Constraints: Greedy algorithms flourish when complexities, intricate
constraints, or dependencies that might lead to intricate decision processes are
absent. Problems governed by straightforward rules tend to harmonize with the
straightforward nature of greedy solutions.

Limitations of Greedy Algorithms:
Despite their prowess in specific contexts, greedy algorithms are not universally
all-encompassing. Several limitations warrant careful consideration:

● Global Optimum Uncertainty: Greedy algorithms lean towards local optimization,
which does not invariably guarantee the discovery of the globally optimal
solution. Certain cases could see an initial locally optimal choice culminate in an
overall suboptimal outcome.



● Complex Dependencies: Problems entailing intricate interdependencies among
decisions can stymie the effectiveness of a greedy approach. Such scenarios
can elude the broader context, potentially prompting selections that appear ideal
in isolation but falter in a holistic context.

● Counterexamples: Some situations may initially appear amenable to a greedy
solution, yet deeper scrutiny could unveil counterexamples where this approach
yields incorrect results.

● Proof of Correctness: Demonstrating the correctness of a greedy algorithm poses
a challenge. Establishing that the greedy choice property and optimal
substructure indeed hold demands meticulous analysis.

● Problem Variability: Variants of a problem can render a once-viable greedy
approach obsolete. Modifying problem constraints or introducing additional
criteria may disrupt the feasibility of an initially fitting greedy solution.

In summation, the prowess of greedy algorithms lies in their adeptness at solving
optimization problems tailored to the greedy choice property and optimal substructure.
The swiftness and efficiency they offer are undeniable assets. Nevertheless, the
limitations they carry—such as the absence of a universal global optimality assurance
and their inadequacy for intricate dependency-riddled scenarios—emphasize the need
for prudent consideration of problem attributes prior to embracing a greedy
methodology.

Comparing dynamic programming and greedy approaches
In the realm of optimization problem-solving, two prominent strategies, dynamic
programming and greedy algorithms, stand out with their distinct attributes and
applications. A comparative analysis between these two methods sheds light on their
strengths and limitations, revealing the contexts in which each approach shines.

1. Nature of Solutions:
Dynamic Programming: A hallmark of dynamic programming is its systematic quest
for the optimal solution by deconstructing the problem into smaller, manageable
subproblems. This approach operates on the principle of reusing previously computed
solutions, building a cumulative solution step by step. The method ensures



comprehensive exploration of subproblems, culminating in a final solution that is
inherently optimal through its consideration of all potential avenues.

Greedy Algorithms: In contrast, greedy algorithms operate on the philosophy of
immediate gratification. At each juncture, they make choices that seem locally optimal,
banking on the belief that these choices will collectively lead to a global optimum. This
strategy prioritizes the most favorable choice at each step without concern for potential
downstream implications. Although this approach doesn't guarantee a globally optimal
solution, it excels in its efficiency and efficacy under specific circumstances.

2. Optimal Substructure:
Dynamic Programming: Dynamic programming finds its stride when dealing with
problems that boast optimal substructure. These are problems where breaking them
down into subproblems leads to a coherent path to the overall solution. The method
employs a bottom-up construction, synthesizing solutions to smaller subproblems to
craft a final solution. The interconnection between subproblems ensures that the whole
is greater than the sum of its parts.

Greedy Algorithms: Greedy algorithms are a natural fit for problems characterized by
the greedy choice property. This property dictates that making immediate locally optimal
selections translates to achieving global optimality. Greedy algorithms operate
top-down, focusing their attention on current optimization without dwelling on the
broader implications, making them suitable for select contexts.

3. Overlapping Subproblems:
Dynamic Programming: An area where dynamic programming thrives is in problems
replete with overlapping subproblems. The method capitalizes on this repetition by
storing solutions to these subproblems, reducing redundant computations and
enhancing efficiency. By leveraging previously computed solutions, dynamic
programming gains momentum in its quest for the optimal solution.

Greedy Algorithms: Unlike dynamic programming, the effectiveness of greedy
algorithms is not intrinsically linked to overlapping subproblems. These algorithms are
guided by the immediate rewards of their choices rather than the potential for reusing
solutions.



4. Time Complexity:
Dynamic Programming: The robust nature of dynamic programming often results in
higher time complexity, necessitating the solution of all conceivable subproblems.
Strategies like memoization and tabulation are employed to mitigate this complexity and
streamline the process.

Greedy Algorithms: Greedy algorithms showcase efficiency, thanks to their
instantaneous decision-making. By bypassing the need to revisit prior choices, they
often lead to expedited approximations of solutions.

5. Guarantee of Optimality:
Dynamic Programming: Dynamic programming exudes confidence in its guarantee of
locating the globally optimal solution. Through its systematic exploration of all
possibilities, it leaves no stone unturned, providing assurance that the best outcome is
attained.

Greedy Algorithms: Greedy algorithms, while rapid and effective in their approach, do
not carry the same guarantee. Their focus on local optimization may occasionally
disregard superior choices, making them more prone to approximations rather than
certainties.

In summation, the selection between dynamic programming and greedy algorithms
hinges on the intricacies of the problem at hand. Dynamic programming assures
optimality while handling optimal substructure and overlapping subproblems. On the
other hand, greedy algorithms are renowned for their efficiency, finding their forte in
problems characterized by the greedy choice property. The art of selecting the right
approach is rooted in comprehending the specific requirements and constraints of the
problem, ultimately determining whether the path to a solution aligns more harmoniously
with the systematic thoroughness of dynamic programming or the swift, immediate
gratification of greedy algorithms.


