
Lesson 5: Dynamic Programming
Dynamic Programming (DP) is a powerful optimization technique used in computer
science and mathematics to solve problems by breaking them down into smaller
subproblems and solving each subproblem only once, storing their solutions in a table
or an array. This approach reduces redundant calculations and leads to efficient
solutions for complex problems that might otherwise be computationally infeasible.

Dynamic Programming is particularly useful for solving problems that exhibit
overlapping subproblems and optimal substructure. Overlapping subproblems occur
when a problem can be broken down into smaller subproblems that are solved
independently, but share common sub-subproblems. Optimal substructure implies that
the optimal solution to the overall problem can be constructed from optimal solutions of
its smaller subproblems.

The main idea behind dynamic programming can be summarized in a few steps:

● Characterize the Structure of an Optimal Solution: Understand how an optimal
solution to the original problem is constructed using optimal solutions to its
subproblems.

● Define Recurrence Relations: Express the value of the optimal solution in terms
of the values of its subproblems. This involves defining recursive equations that
describe the relationship between the current problem and its smaller
subproblems.

● Memoization or Tabulation: There are two common ways to implement dynamic
programming: memoization and tabulation.

○ Memoization: In this approach, you solve each subproblem only once and
store its solution in a data structure (often an array or a hash table) to
avoid redundant calculations. This is typically done using recursion with
caching.

○ Tabulation: Tabulation involves solving the subproblems in a bottom-up
manner, starting from the smallest subproblems and iteratively building up
to the larger ones. The solutions are stored in a table or array, and the
final solution to the original problem can be obtained from the table.



Dynamic programming is used in a wide range of problems such as:

● Fibonacci Sequence: Computing the nth Fibonacci number efficiently.
● Knapsack Problem: Optimizing the selection of items with certain weights and

values to maximize value without exceeding a given weight limit.
● Shortest Path Problems: Finding the shortest path between two points in a graph.
● Longest Common Subsequence: Finding the longest sequence that is common

to two sequences.
● Matrix Chain Multiplication: Optimally parenthesizing matrix multiplication to

minimize the number of scalar multiplications.

The process of applying dynamic programming involves identifying the subproblem
structure, designing an efficient algorithm using either memoization or tabulation, and
then implementing and testing the solution. Dynamic programming can lead to
significant speedups in solving problems and is a fundamental concept in algorithm
design.

Memoization and tabulation techniques
Memoization and tabulation are two common techniques used to implement dynamic
programming and optimize solutions to problems with overlapping subproblems and
optimal substructure.

Memoization:
Memoization is an optimization technique that stores the results of previously computed
function calls. This allows the function to avoid recomputing the results of those calls,
which can improve performance significantly.

Memoization is often used in recursive functions, where the same subproblem
can be called multiple times. For example, the following function calculates the
Fibonacci numbers:

def fibonacci(n):
if n == 0 or n == 1:
return n

else:
return fibonacci(n - 1) + fibonacci(n - 2)



The fibonacci function is recursive because it calls itself to calculate the
Fibonacci numbers for smaller values of n. This can be inefficient, as the same
subproblems can be called multiple times.

We can use memoization to improve the performance of the fibonacci function.
We can create a dictionary to store the results of previously computed Fibonacci
numbers. The key for each entry in the dictionary is the Fibonacci number, and
the value is the result of the calculation.

The following function is a memoized version of the fibonacci function:

def fibonacci(n):
if n == 0 or n == 1:
return n

if n in memo:
return memo[n]

result = fibonacci(n - 1) + fibonacci(n - 2)
memo[n] = result

return result

The memoized version of the fibonacci function only calculates each Fibonacci
number once. This can significantly improve the performance of the function,
especially for large values of n.

Memoization is a powerful optimization technique that can be used to improve
the performance of recursive functions. It is also used in other contexts, such as
dynamic programming.

Tabulation:
Tabulation is a technique used to solve recursive problems iteratively. It works by
storing the results of intermediate computations in a table. This allows us to avoid
recomputing the same results multiple times, which can improve performance
significantly.



Tabulation is often used in dynamic programming problems. For example, the
following function calculates the Fibonacci numbers using tabulation:

def fibonacci(n):
if n == 0 or n == 1:
return n

table = {}
table[0] = 0
table[1] = 1

for i in range(2, n + 1):
table[i] = table[i - 1] + table[i - 2]

return table[n]

The tabulation version of the fibonacci function stores the results of the Fibonacci
numbers for all values from 0 to n in a table. This allows us to avoid recomputing
the Fibonacci numbers for smaller values of n, which can significantly improve
performance for large values of n.

Tabulation is a powerful technique that can be used to solve recursive problems
iteratively. It is also used in other contexts, such as dynamic programming.

Both techniques have their own advantages and use cases. Memoization is
generally preferred when the recursive structure of the problem is more intuitive
and easier to express, or when not all subproblems need to be solved. Tabulation
is preferred when the subproblem dependency structure can be clearly defined
and the solution can be built iteratively.

It's worth noting that in some cases, a hybrid approach called "top-down with
memoization and bottom-up tabulation" is used. This involves using both techniques to
take advantage of their respective strengths while avoiding their weaknesses. This
approach is particularly useful in scenarios where the recursive structure is natural but
some overlapping subproblems are better solved through tabulation.

Overall, both memoization and tabulation are powerful techniques that allow dynamic
programming solutions to be implemented efficiently for a wide range of problems. The
choice between them depends on the specific problem and the most appropriate way to
express its subproblem structure.



Overlapping subproblems and optimal substructure
"Overlapping subproblems" and "optimal substructure" are two key concepts that are
often associated with problems that can be effectively solved using dynamic
programming techniques.

Overlapping Subproblems:
Overlapping subproblems refer to a situation where a problem can be broken down into
smaller subproblems, and the solutions to these subproblems are reused multiple times.
In other words, the same subproblem is solved multiple times in the process of solving
the larger problem.

Dynamic programming takes advantage of this property by storing the solutions of
subproblems in a cache (using memoization) or a table (using tabulation). This prevents
redundant calculations and greatly improves the efficiency of the algorithm. Overlapping
subproblems are a fundamental characteristic of problems that can benefit from
dynamic programming.

Optimal Substructure:
Optimal substructure is a property that suggests the optimal solution to a larger problem
can be constructed from the optimal solutions of its smaller subproblems. In other
words, the optimal solution of the entire problem can be found by combining the optimal
solutions of its constituent subproblems.

This property is essential for dynamic programming to work effectively. It enables us to
solve subproblems independently and then combine their solutions to arrive at the
optimal solution for the whole problem. Problems that exhibit optimal substructure can
be efficiently solved using bottom-up tabulation or top-down memoization techniques,
as they allow us to break down the problem into manageable parts and build up the
solution incrementally.

Examples:
Fibonacci Sequence:



● Overlapping Subproblems: Calculating Fibonacci numbers involves repeatedly
calculating smaller Fibonacci numbers.

● Optimal Substructure: The nth Fibonacci number is the sum of the (n-1)th and
(n-2)th Fibonacci numbers.

Shortest Path Problem:
● Overlapping Subproblems: The same subpaths are often part of multiple possible

paths between two nodes.
● Optimal Substructure: The shortest path from node A to node B can be

composed of the shortest path from A to a node C and the shortest path from C
to B.

Knapsack Problem:
● Overlapping Subproblems: Different combinations of items may lead to the same

remaining capacity and therefore the same subproblem.
● Optimal Substructure: The optimal solution for a knapsack of capacity W can be

found by considering whether to include the current item or not.

In summary, overlapping subproblems and optimal substructure are two fundamental
characteristics that make problems suitable for dynamic programming. Overlapping
subproblems allow for reuse of solutions, while optimal substructure enables the
combination of smaller subproblem solutions to find the optimal solution for the larger
problem. These concepts form the basis for the efficient solving of complex problems
using dynamic programming techniques.

Examples of dynamic programming problems

Fibonacci Sequence:
Imagine a magical sequence where each number is the sum of the two preceding ones.
It starts with 0 and 1, and then each subsequent number is created by adding the
previous two numbers together. This sequence goes like this: 0, 1, 1, 2, 3, 5, 8, 13, ...

Problem: Your quest is to efficiently find any number in this fascinating sequence.

Solution:
Memoization: Picture a treasure map that guides you through the sequence. As you
journey through the numbers, you create marks on the map to remember the numbers



you've visited. This way, when you encounter a number you've already seen, you don't
need to recalculate it.
Tabulation: Imagine building a staircase of numbers, where each step is created by
adding the previous two steps together. You start with the foundation of 0 and 1, and
then, as you ascend the staircase, each new step is a sum of the two steps below.

Longest Common Subsequence (LCS):
Think of two strings as puzzle pieces. Your goal is to find the longest piece that fits into
both strings, even if it's not in one continuous chunk. This puzzle piece is called the
Longest Common Subsequence (LCS).

Problem: Your mission is to figure out the length of the longest puzzle piece that can be
made by fitting these two strings together.

Solution: Imagine having a grid where you place the puzzle pieces side by side, one
string on the top and the other on the side. You then fill in the grid with clues that show
how the puzzle pieces match. As you move through the grid, you uncover the secrets of
the longest common subsequence.

Knapsack Problem:
Envision yourself as a smart packer, preparing for an adventure. You have a set of
precious items, each with a weight and a value. Your challenge is to maximize the value
of the loot you carry while staying within a weight limit.

Problem: Your task is to ingeniously choose the items to pack in your knapsack to
maximize the total value without overloading yourself.

Solution: Imagine having a knapsack with limited space and a collection of items
scattered around. You methodically pick up each item and decide whether it's worth
carrying based on its weight and value. You skillfully fit the chosen items into the
knapsack while aiming to collect the most valuable treasures.



Advanced dynamic programming applications
Both edit distance and matrix chain multiplication are classic examples of dynamic
programming problems. They demonstrate the power of dynamic programming in
solving optimization and combinatorial problems efficiently. Let's delve a bit deeper into
these applications:

Edit Distance (Levenshtein Distance):
Edit distance measures the similarity between two strings by counting the minimum
number of operations (insertion, deletion, or substitution) required to transform one
string into another. It has applications in fields like spell checking, DNA sequence
alignment, and natural language processing.

Key Points:
● The problem can be solved using a dynamic programming table where each cell

represents the edit distance between substrings of the two input strings.
● The recurrence relation involves considering three possible operations (insertion,

deletion, substitution) and choosing the minimum cost operation to fill each cell.
● The bottom-up approach starts with small substrings and builds up the solution

for larger substrings.

Matrix Chain Multiplication:
Matrix chain multiplication involves finding the most efficient way to parenthesize a
sequence of matrices to minimize the total number of scalar multiplications. It's a key
problem in computer science and optimization.

Key Points:
● The problem can be solved using dynamic programming, specifically by building

up solutions for subproblems in a bottom-up manner.
● The idea is to find an optimal parenthesization for multiplying matrix chains of

different lengths, exploiting the associativity property of matrix multiplication.
● The recurrence relation involves trying all possible split points to find the optimal

parenthesization.
● Dynamic programming memorizes the solutions to subproblems, so they are not

recalculated multiple times.

These are just two examples of advanced dynamic programming applications. Dynamic
programming is a versatile technique used in various fields, including computer science,



operations research, bioinformatics, and economics. Some other notable applications
include:

● Longest Common Subsequence (LCS):
Finding the longest subsequence that two sequences have in common, where
the subsequence does not necessarily have to occupy consecutive positions.

● Knapsack Problem:
Maximizing the value of items in a knapsack without exceeding its weight
capacity.

● Traveling Salesman Problem (TSP):
Finding the shortest possible route that visits a given set of cities and returns to
the origin city.

● Coin Change Problem:
Determining the number of ways to make change for a given amount using a set
of coins.

● Maximum Sum Subarray:
Finding the subarray with the maximum sum within a given array of numbers.

● Floyd-Warshall Algorithm:
Finding the shortest paths between all pairs of vertices in a weighted graph.

These applications showcase the flexibility and effectiveness of dynamic programming
in solving a wide range of optimization and combinatorial problems efficiently.


