Lesson 4: Transportation and Assignment Problems

Transportation problems, in the context of operations research and logistics, refer to
mathematical optimization problems that deal with finding the most cost-effective way to
distribute a set of goods from multiple sources to multiple destinations. These problems
arise in various real-world scenarios, such as supply chain management, distribution
planning, and resource allocation.

The typical setup for a transportation problem involves the following
components:

e Sources: These are the locations where goods are available or produced.
e Destinations: These are the locations where goods need to be delivered.

e Supply and Demand: Each source has a certain supply of goods, and each
destination has a demand for a specific quantity of goods.

e Costs: A cost is associated with transporting a unit of goods from a source to a
destination. These costs can represent transportation costs, distance, time, or
any relevant metric.

The goal of solving a transportation problem is to determine the optimal transportation
plan that minimizes the total transportation cost while satisfying the supply and demand
constraints. This involves deciding how much to transport from each source to each
destination, such that the total supply matches the total demand, and the transportation
cost is minimized.

Transportation problems can be formulated as linear programming problems, which are
mathematical models that involve linear objective functions and linear constraints. There
are various methods to solve transportation problems, including the North-West Corner
Method, Least Cost Method, Vogel's Approximation Method, and the MODI (Modified
Distribution) Method. Additionally, these problems can be solved using specialized
optimization software.

Transportation problems serve as a fundamental building block for more complex
logistics and supply chain optimization challenges. They provide insights into efficient
resource allocation, cost reduction, and overall better management of distribution
networks.



Formulation of transportation problems

The mathematical formulation of a transportation problem is as follows:

e Decision variables: The decision variables are the quantities to be
transported from each source to each destination. These are denoted by
xi7, where 1 is the index of the source and 7 is the index of the
destination.

e Objective function: The objective function is to minimize the total
transportation cost. This is given by the following equation:

min & cij * xij
where cij is the cost of transporting one unit from source i to destination .

e Constraints: The constraints are the supply and demand constraints. The
supply constraint for source i is given by the following equation:

¥ xij < ai

where ai is the supply at source i.

The demand constraint for destination 5 is given by the following equation:

S xij > bj

where b7 is the demand at destination 7.

The transportation problem can be solved using a variety of methods, including the
simplex algorithm, the Hungarian method, and the Vogel approximation method.

Here is an example of a transportation problem:



There are three sources, A, B, and C, that can supply a total of 100 units. There are two
destinations, D and E, that have a demand of 60 and 40 units, respectively. The cost of
transporting one unit from each source to each destination is given in the following
table:

Source | Destination | Cost

20
30
10
20
40
50

The objective is to minimize the total transportation cost. The mathematical formulation
of this problem is as follows:

Decision variables: x11, x12, x21, x22, x31, and x32.

e Objective function: min (20 * x11 + 30 * x12 + 10 * x21 + 20 * x22
+ 40 * x31 + 50 * x32).

e Constraints:

o x11 + x21 + x31 < 100.
0 x12 + x22 + x32 2 60.
o x11 + x12 = 60.
O x21 + x22 = 40

This problem can be solved using any of the methods mentioned above. The optimal
solution is to transport 20 units from A to D, 30 units from A to E, 40 units from B to D,
and 20 units from B to E. The total transportation cost is 200.

Initial feasible solution methods

When solving transportation problems, initial feasible solution methods are used to find
an initial allocation of goods from sources to destinations that can serve as a starting
point for more advanced optimization algorithms. These methods are relatively simple
and provide a basic feasible solution that can then be refined using more sophisticated
techniques. Here are three common initial feasible solution methods:



North-West Corner Method: This method starts by allocating goods in the top-left
corner of the transportation matrix (the north-west corner). It proceeds by satisfying the
supply of the first source and the demand of the first destination, then moving to the
next source and destination in a stepwise manner. At each step, it allocates the
maximum amount possible while adhering to the available supply and demand. This
method tends to create a basic feasible solution quickly, but it might not be very efficient
in terms of total cost.

Least Cost Method: The least cost method involves selecting the cell with the lowest
transportation cost in the matrix and allocating as much as possible based on the
available supply and demand for that cell. The process is repeated, selecting the next
least cost cell and allocating accordingly, until either the supply or demand for a source
or destination is exhausted. This method often provides a solution with a lower total
transportation cost compared to the North-West Corner Method.

Vogel's Approximation Method (VAM): Vogel's method takes into account the
differences in transportation costs for different routes. In each row and column, it
identifies the two lowest cost cells and computes the "penalty" for each row and column
as the difference between these two costs. It then selects the row or column with the
highest penalty and allocates as much as possible to the lowest cost cell in that row or
column. This approach considers cost variability and usually provides a better initial
solution than the previous two methods.

These initial feasible solution methods are used to establish a starting point for more
advanced optimization techniques like the Modified Distribution Method (MODI), the
stepping-stone method, or even advanced algorithms like the transportation simplex
method. These subsequent methods help refine the initial solution to obtain the optimal
or near-optimal transportation plan that minimizes costs and satisfies supply and
demand constraints.

Optimality testing and solution methods

Once an initial feasible solution has been obtained for a transportation problem, the next
steps involve testing its optimality and, if necessary, refining it to find the optimal
solution. There are several methods for optimality testing and solution refinement in
transportation problems:



1.

3.

Basic Feasible Solution: The initial feasible solution obtained from methods like
the North-West Corner, Least Cost, or Vogel's Approximation provides a basic
feasible solution to the transportation problem. However, this solution might not
be optimal in terms of minimizing transportation costs.

Optimality Testing: After obtaining a basic feasible solution, you need to test
whether it's optimal. There are two main methods for this:

¢ Modified Distribution (MODI) Method: This method helps identify which
cells can be improved to decrease the total transportation cost. It
calculates the opportunity costs for each empty cell in the transportation
matrix. The opportunity cost represents how much the cost of the
transportation plan would change if one unit were added to that cell. By
identifying the cell with the highest opportunity cost, you can refine the
solution by reallocating goods in a way that reduces the total cost. The
process is repeated until no more improvements can be made.

e Stepping-Stone Method: This method systematically evaluates the
potential improvement of the current solution by considering "loops"
formed by occupied cells in the transportation matrix. It involves moving
units from one cell to another in a loop to determine if the total cost
decreases. The stepping-stone method helps identify the best way to
redistribute goods to reduce the transportation cost.

Improvement and Iteration: Both the MODI method and the stepping-stone
method involve making improvements to the solution by reallocating units of
goods. The iterations continue until no more improvements can be made,
indicating that the current solution is optimal.

Optimal Solution: Once the optimality testing and improvement iterations are
completed, you will have an optimal solution that minimizes the transportation
cost while meeting supply and demand constraints. This solution provides the
quantities to be transported from each source to each destination, ensuring
cost-effective distribution.

Special Algorithms: In some cases, particularly when transportation problems
become larger or more complex, specialized algorithms such as the
Transportation Simplex Method can be used to directly find the optimal solution.
The Transportation Simplex Method is an extension of the simplex algorithm, a
widely used optimization technique.



It's important to note that transportation problems with specific characteristics can be
solved more efficiently using dedicated algorithms or software tools designed for these
types of problems. These tools take advantage of the problem's structure to achieve
faster and more accurate solutions.

Introduction to assignment problems and Hungarian
algorithm

Assignment problems are a special class of optimization problems where the objective
is to find the optimal assignment of a set of agents to a set of tasks, with the goal of
minimizing the total cost or maximizing the total benefit. Each agent can be assigned to
exactly one task, and each task can be assigned to exactly one agent. These problems
have applications in various fields such as operations research, logistics, economics,
and computer science.

The Hungarian algorithm is an efficient method for solving assignment problems. It was
developed by two Hungarian mathematicians, Dénes Kénig and Jen6 Egervary, and
later refined by Harold Kuhn. The algorithm is based on the concept of constructing an
initial feasible solution and iteratively improving it until the optimal assignment is found.
Here's an overview of the Hungarian algorithm:

Steps of the Hungarian Algorithm:

Cost Matrix: Start with a cost matrix, where each element represents the cost (or
benefit) of assigning an agent to a task. If the problem involves maximizing benefit,
convert it to a minimization problem by subtracting each element from a large constant.

Step 1: Row Reduction: Subtract the smallest element in each row from all the
elements in that row. This step aims to make at least one zero in each row.

Step 2: Column Reduction: Subtract the smallest element in each column from all the
elements in that column. This step aims to make at least one zero in each column.

Step 3: Marking Zeros and Lines: Mark zeros in the matrix in a way that a minimum
number of lines (horizontal and vertical) cover all the zeros. These lines represent the
potential assignments.



Step 4: Finding a Cover: If the number of lines drawn equals the number of
agents/tasks, an optimal assignment is possible. If not, identify the smallest element not
covered by any line and subtract it from all uncovered elements while adding it to the
elements at the intersection of the lines. This step effectively increases the number of
Zeros.

Step 5: Updating Lines: Adjust the lines to cover as many zeros as possible. Zeros that
are part of a line intersection become non-eligible for selection in the next iteration.
Repeat Steps 4-6: Repeat Steps 4 to 6 until an optimal assignment is achieved (i.e., the
number of lines equals the number of agents/tasks).

Final Assignment: The final assignment corresponds to the marked zeros. Each agent
is assigned to the task that has a marked zero in its row.

The Hungarian algorithm guarantees an optimal solution for assignment problems and
runs in polynomial time, making it a widely used method for solving these problems. It's
particularly efficient when dealing with larger problem instances. However, it's important
to note that the Hungarian algorithm is best suited for cases where the number of
agents and tasks is relatively small. For larger instances, more specialized algorithms
might be more appropriate.



