
Lesson 3: Simplex Method and Duality
The Simplex method is a mathematical algorithm used to solve linear programming (LP)
problems. It was developed by George Dantzig in the late 1940s and remains one of
the most widely used techniques for
optimizing linear objective functions
subject to linear equality and inequality
constraints. The method is designed to
find the optimal solution – the best
possible outcome – for problems
involving resource allocation,
production planning, transportation,
and more.

The term "simplex" refers to a
geometric shape, specifically a
simplex, which is a generalization of a
triangle to higher dimensions. The
Simplex method operates by moving along the edges of this geometric shape in a
systematic manner to reach the optimal solution. It iteratively improves the current
solution by identifying variables to enter and exit the solution, guided by the direction
that leads to the most significant improvement in the objective function.

The algorithm starts with an initial feasible solution and progressively moves towards
the optimal solution by iteratively adjusting the variables. At each step, it pivots between
different feasible solutions while ensuring that the objective function is improved. The
Simplex method terminates when no further improvement is possible, indicating that the
optimal solution has been reached.

Although the Simplex method was developed in an era before the widespread
availability of computers, it remains relevant and effective in solving moderately sized
linear programming problems. For larger and more complex problems, other
optimization techniques such as interior-point methods have gained prominence due to
their computational efficiency.



Detailed steps of the simplex method
The Simplex method is a systematic algorithm used to solve linear programming
problems by iteratively improving a feasible solution until an optimal solution is reached.
Here are the detailed steps of the Simplex method:

1. Formulate the Initial Simplex Tableau:
● Convert the given linear programming problem into standard form.
● Set up the initial Simplex tableau by arranging the coefficients of decision

variables in the objective function, slack variables for inequality
constraints, and artificial variables for non-negativity constraints.

● Create the tableau with columns representing variables and rows
representing constraints, including the objective function row and the
right-hand side column.

2. Identify the Pivot Column:
● Choose the pivot column, which corresponds to the variable that will enter

the basis (become basic). Select the most negative coefficient in the
objective function row.

3. Calculate Ratios:
● For each constraint row, calculate the ratio of the right-hand side value to

the corresponding coefficient in the pivot column.
● Determine the smallest positive ratio; this will indicate the pivot row (the

constraint that will be exited).

4. Perform the Pivot Operation:
● Divide the pivot row by the pivot element (the coefficient of the entering

variable in the pivot row), making the pivot element equal to 1.
● Use row operations to make all other coefficients in the pivot column equal

to 0.

5. Update Basic and Non-Basic Variables:
● After the pivot operation, the entering variable becomes basic, and the

exiting variable becomes non-basic.
● Update the tableau with the new basic and non-basic variable values.

6. Repeat Steps 2 to 5:
● Continue the process by selecting a new pivot column and pivot row

based on the most negative coefficient in the objective function row and
the smallest positive ratio.



7. Optimal Solution Check:
● Continue iterating until there are no negative coefficients in the objective

function row. At this point, the current solution is optimal.

8. Extract Solution:
● Once the optimal solution is reached, the basic variables' values in the

right-hand side column of the tableau represent the optimal solution.
● The value at the bottom of the objective function row is the optimal value

of the objective function.

9. Sensitivity Analysis:
● Perform sensitivity analysis to assess the impact of changes in

coefficients, constraints, or right-hand side values on the optimal solution.

10. Interpretation and Conclusion:
● Interpret the optimal solution in the context of the original problem.
● Evaluate the results and consider any practical implications or constraints

not captured in the model.

The Simplex method iteratively refines the feasible solution by pivoting between basic
and non-basic variables, moving towards the optimal solution. While this explanation
provides a general overview, performing the Simplex method manually can be complex
for larger problems. However, computer software and algorithms make the process
more efficient for solving real-world optimization challenges.

Maximization and minimization problems
Maximization and minimization problems are types of optimization problems
encountered in various fields such as mathematics, economics, engineering, and
operations research. They involve finding the best possible value of an objective
function within a given set of constraints. The objective is to either maximize or minimize
this function, depending on the problem's nature and goals.

Maximization Problems
Maximization problems are a fundamental category within the realm of optimization,
focusing on achieving the highest possible value of a specific parameter, known as the



objective function. These problems arise in a multitude of fields, spanning from
economics and business to science and engineering, where the primary objective is to
capitalize on available resources or circumstances.

At the heart of maximization problems lies the objective function, a mathematical
representation of the quantity to be optimized. This function hinges upon decision
variables, which are the adjustable factors contributing to the objective's value.
Simultaneously, constraints are introduced to reflect the limitations that these variables
must adhere to, whether due to budget constraints, capacity limitations, or other
practical considerations.

The interplay between decision variables and constraints gives rise to the feasible
region, a defined space within which solutions align with the stipulated constraints. The
goal in maximization problems is to pinpoint the optimal solution, a combination of
variable values within the feasible region that yields the highest possible value of the
objective function.

These problems manifest in various real-world scenarios. In the realm of business, a
company might grapple with determining production quantities for various products to
maximize overall profit while abiding by resource limitations. In finance, investors strive
to allocate their funds in a way that maximizes returns while managing risk effectively.
The concept extends to fields like logistics, agriculture, and marketing, where optimizing
outcomes can have profound impacts on efficiency, yield, and reach.

Solving maximization problems involves the application of optimization techniques, such
as the well-known Simplex method or other numerical algorithms. These methods
navigate through the solution space, iteratively adjusting the values of decision
variables to uncover the combination that produces the optimal result.

In essence, maximization problems encapsulate the essence of strategic
decision-making. They offer a systematic approach to making the most of opportunities
within given constraints, guiding individuals, businesses, and industries toward optimal
outcomes in a wide array of scenarios.

Minimization Problems
Minimization problems are a crucial category of optimization challenges that revolve
around finding the lowest possible value for a given parameter, known as the objective
function. These problems arise across various domains, such as economics,



engineering, and science, where the goal is to minimize negative aspects or costs
associated with a situation.

At the core of minimization problems lies the objective function, which quantifies the
measure to be minimized. This function is influenced by decision variables, representing
adjustable factors that impact the objective's value. Constraints are then introduced to
define the limitations that these variables must adhere to, whether due to resource
constraints, time limitations, or other practical considerations.

The interaction between decision variables and constraints leads to the identification of
the feasible region, a designated area where solutions are in line with the imposed
constraints. In minimization problems, the focus is on discovering the optimal solution –
a combination of variable values within the feasible region that results in the lowest
value of the objective function.

Minimization problems manifest across diverse real-world scenarios. In business, a
company might seek to minimize production costs by determining the optimal quantity of
resources to use. In transportation planning, routes may need to be optimized to
minimize travel time or fuel consumption. Environmental studies might involve
minimizing pollution levels by regulating emissions within certain limits.

To solve minimization problems, optimization techniques such as the Simplex method or
advanced numerical algorithms are employed. These methods systematically navigate
through the solution space, iteratively adjusting decision variable values to uncover the
configuration that yields the optimal outcome.

In summary, minimization problems encompass the essence of efficiency-driven
decision-making. They provide a structured framework for reducing negative aspects,
costs, or inefficiencies while adhering to given constraints. By offering insights into how
to achieve the most favorable outcomes within the defined limitations, minimization
problems play a pivotal role in optimizing processes, systems, and resources across a
wide spectrum of applications.

Duality in linear programming
Duality, a central concept in the realm of linear programming (LP), unveils a fascinating
interconnection between two optimization problems stemming from the same set of
constraints. This pair consists of the "primal" problem and its counterpart, the "dual"



problem. Duality not only grants valuable insights into the nature of LP solutions but
also serves as a tool to delve into the economic interpretations inherent in a given
problem.

Primal Problem: The foundation of duality rests upon the primal problem in LP. This
involves the task of either maximizing or minimizing an objective function while
operating within a predefined set of linear constraints. The primal problem strives to
identify the optimal values of decision variables that both satisfy the constraints and
yield the best attainable value for the objective function.

Dual Problem: Corresponding to the primal problem emerges the dual problem. Each
constraint in the primal problem gives rise to a dual variable, often referred to as a
shadow price. This dual problem aspires to either minimize or maximize a function
defined in terms of these dual variables. It adheres to constraints derived from the
coefficients of the primal objective function. The primary objective of the dual problem is
to ascertain the values of these dual variables, which, in turn, provide bounds on the
optimal value of the primal problem's objective.

Duality Theorem: The crux of duality finds its expression in the duality theorem, a
pivotal theorem in linear programming. This theorem establishes a robust connection
between the optimal values of the primal and dual problems. According to the duality
theorem, the optimal value of the primal problem is always greater than or equal to the
optimal value of the dual problem. This profound relationship holds true regardless of
the specific formulations of the primal and dual problems.

Interpretation and Benefits: Duality's significance extends across various dimensions in
linear programming:

● Optimality Conditions: The duality theorem unfolds an essential condition for
optimality. If a feasible solution satisfies both the primal and dual constraints,
along with dual solutions that meet the primal constraints, these solutions are
deemed optimal.

● Sensitivity Analysis: Dual variables, often referred to as shadow prices, unravel
the degree to which the objective function coefficient would necessitate alteration
to influence the optimal solution. This yields a tangible economic interpretation.

● Resource Valuation: Dual variables offer a quantitative measure of how
perturbing the right-hand side of a constraint would impact the objective function.
This translates into an economic valuation of resources or constraints.



● Bounds on Optimal Solutions: The optimal value attained in the dual problem
effectively serves as an upper bound on the optimal value achieved in the primal
problem. This becomes particularly relevant in situations where solving one of
the problems directly is challenging.

● Alternative Solutions: Dual variables provide a roadmap to identifying alternative
optimal solutions by signaling the constraints that are pivotal in shaping the
optimal point.

In summary, duality within linear programming unfolds a profound tapestry of
connections between primal and dual problems. It's a key to grasping economic
implications, facilitating sensitivity analysis, and yielding bounds on optimal solutions.
This concept not only enriches theoretical analysis but also bolsters practical
decision-making grounded in linear programming models.

Interpretation of dual variables
Dual variables, also known as shadow prices or dual prices, are a pivotal concept within
linear programming (LP) that holds significant economic implications. These variables
are closely linked to the constraints of the primal LP problem and play a vital role in
uncovering the sensitivity of the objective function to changes in constraint coefficients.
Understanding dual variables provides valuable insights into how alterations in resource
availability and constraints impact the optimal solution and objective value.

Dual variables have profound significance:
The dual variables signify the value or marginal contribution of increasing the right-hand
side of a constraint. They indicate how much the objective function's optimal value
would increase if the constraint were slightly relaxed while keeping other constraints
constant. Often referred to as shadow prices, dual variables shed light on how small
changes in constraint values influence the optimal objective value. A higher dual
variable suggests that the corresponding constraint is binding in the optimal solution,
and relaxing it could lead to an increase in the objective value. This dual interpretation
provides an economic perspective on constraints, indicating the willingness to pay (in
maximization problems) or the opportunity cost (in minimization problems) of altering a
specific constraint.

Interpreting dual variables is applicable in various scenarios:



In situations of resource scarcity and surplus, a high positive dual variable indicates that
a resource is scarce and has a substantial impact on the objective. Conversely, a low or
negative dual variable implies that the resource is abundant or not limiting. In
maximization problems, a significant dual variable associated with a constraint implies
that increasing the constraint's value could lead to a substantial increase in the optimal
objective value. Additionally, a positive dual variable indicates that a constraint
relaxation (increasing the right-hand side) by a small amount would result in a
proportional increase in the optimal objective value.

The significance of dual variables extends to sensitivity analysis:
Dual variables play a pivotal role in sensitivity analysis, allowing us to examine how
changes in constraint coefficients affect the optimal solution and objective value. By
observing how dual variables change, decision-makers can understand which
constraints have the most significant impact and which are more flexible. This aids in
resource allocation decisions and strategic planning.

In practical applications:
Dual variable interpretation finds utility in various fields. In production planning, they
provide insight into resource allocation for optimal production. In transportation
planning, dual variables guide logistics decisions by quantifying the impact of supply or
demand changes. In portfolio optimization, dual variables indicate the effect of
modifying investment limits on expected returns.

In summary, interpreting dual variables in linear programming offers a clear
understanding of the economic implications of constraints. They bridge the gap between
mathematical optimization and real-world decision-making, enabling optimal resource
allocation and insightful sensitivity analysis.


