Lesson 3: Control Structures in Procedural
Programming

Control structures are fundamental constructs in procedural programming that allow
programmers to control the flow of execution within a program. They enable decisions
to be made and repetitive tasks to be performed based on specific conditions. Control
structures provide the means to create dynamic and interactive programs.

Conditional statements (if-else, switch)

Conditional statements are essential control structures in procedural programming that
allow you to make decisions and execute different blocks of code based on specific
conditions. Two common types of conditional statements are "if-else" and "switch"
statements.

if-else statement:

The "if-else" statement is used to make binary decisions, executing one block of code if
a certain condition is true and another block of code if the condition is false. The syntax
for the "if-else" statement is as follows:

if condition:

The "else" block is optional, and if the condition in the "if" statement is true, only the
code within the "if" block is executed.

print ("You are a minor.")



switch statement (or case statement):

The "switch" statement is used to select one of many code blocks to be executed based
on the value of an expression. While "switch" statements are prevalent in some
programming languages (like C and C++), they are not natively supported in Python.

In Python, you typically use a series of "if-elif-else" statements to achieve similar
functionality as a "switch" statement.

Example in Python (equivalent of a switch statement):

day of week = 3

if day of week ==
print ("Monday")
elif day of week ==

print ("Tuesday")

print ("Wednesday")

elif day of week == 4:

print ("Thursday")

print ("Weekend")

In this example, the program determines the day of the week based on the value of the
"day_of week" variable.

Note: Some programming languages, like Python, do not have a direct "switch"
statement, as the "if-elif-else" construct is often sufficient to handle conditional
scenarios. If you need more complex decision-making, you can utilize nested "if-else"
statements or other data structures like dictionaries for mapping keys to values.



Looping structures (for, while, do-while)

Looping structures are control structures in procedural programming that allow you to
repeat a block of code multiple times based on specific conditions. They are used to
perform iterative tasks, process collections of data, and implement repetitive operations
efficiently. The three common types of looping structures in procedural programming are
"for," "while," and "do-while" loops.

for loop:

The "for" loop is used when you know the number of iterations you want to perform. It
allows you to execute a block of code a fixed number of times. The syntax for a "for"
loop is as follows:

for variable in range (start, stop, step):

- The “variable’ is a loop control variable that takes values from the “start’ value to
“stop-1" value with a specified “step’. By default, “start’ is 0, and “step’ is 1.

- The "for" loop is particularly useful when dealing with sequences like lists, strings, or
arrays.

for i in range(l, 6):

print ("Iteration:", i)

while loop:

The "while" loop is used when you want to repeat a block of code as long as a certain
condition is true. It keeps executing the code block until the condition becomes false.
The syntax for a "while" loop is as follows:

while condition:

- The "while" loop may execute indefinitely if the condition never becomes false, so it's
essential to ensure that the condition eventually becomes false to exit the loop.



while count < 5:

print ("Count:", count)

count += 1

do-while loop:

The "do-while" loop is not natively available in Python and some other languages.
Unlike the "while" loop, a "do-while" loop executes the code block first and then checks
the condition. It ensures that the code block is executed at least once, even if the
condition is false initially.

While Python doesn't have a built-in "do-while" loop, a similar behavior can be achieved
using a "while" loop with a break statement.

Example in Python (equivalent of a do-while loop):

print ("Count:", count)

count += 1

if count >= 5:
break

In procedural programming, the choice of looping structure depends on the specific
problem and the type of data being processed. "for" loops are ideal for iterating over
sequences with a known number of elements, while "while" loops are useful when the
exact number of iterations is uncertain or determined by a dynamic condition.

Using control structures for decision-making and repetition

Control structures are essential tools in procedural programming for decision-making
and repetition. They allow you to create dynamic and interactive programs by executing
different blocks of code based on specific conditions and repeating tasks until certain
criteria are met. Let's explore how control structures can be used for decision-making
and repetition:



Decision-Making with Control Structures:

Conditional statements, such as "if-else" and "switch" (if available), are used for
decision-making in procedural programming. They allow the program to make choices
and execute different blocks of code based on specific conditions.

Example: A simple program to check if a number is positive or negative.

number = int (input ("Enter a number: "))

if number > O:

print ("The number is positive.")
elif number < O:

print ("The number is negative.")
else:

print ("The number is zero.")

Repetition with Control Structures:

Looping structures like "for" and "while" loops enable repetition in procedural
programming. They allow you to execute a block of code multiple times until a certain
condition is met.

Example: A program to calculate the sum of numbers from 1 to n using a "for
loop.

int (input ("Enter a positive integer: "))

(l
sum result = 0

for 1 in range(l, n + 1):

sum result += i

print ("The sum of numbers from 1 to", 1s:", sum result)




Example: A program to calculate the factorial of a number using a "while" loop.

num = int (input ("Enter a non-negative integer: "))

factorial = 1

while 1 <= num:
factorial *= 1
i =l

print ("The factorial of", num, "is:", factorial)

By combining decision-making with conditional statements and repetition with looping
structures, you can build powerful procedural programs to solve a wide range of
problems. Control structures make your programs more flexible, interactive, and
capable of handling diverse scenarios, allowing you to efficiently process data, perform
calculations, and implement various algorithms.

Handling nested control structures

Handling nested control structures involves using one or more control structures (e.g.,
conditional statements or loops) within another control structure. Nested control
structures are commonly used in procedural programming to solve complex problems
that require multiple levels of decision-making or iteration.

The key to effectively handling nested control structures is to ensure proper indentation
and logical organization of code. Indentation is essential to visually represent the

hierarchy of control structures and helps maintain code readability.

Here are some common examples of nested control structures:



Nested "if-else" statements:

You can have one or more "if-else" statements nested within another "if" or "else" block.
This is useful when you need to consider multiple conditions or make more fine-grained
decisions based on different cases.

Example: A program to determine the grade based on marks scored.

marks = int (input ("Enter your marks: "))

if marks >= 90:
print ("Grade: A+")
else:
if marks >= 80:
print ("Grade: A")
else:
if marks >= 70:

print ("Grade:

print ("Grade:

Nested loops:

You can have one or more loops (e.g., "for" or "while" loops) nested within another loop.
This is useful when you need to process multidimensional data or perform repetitive
tasks in a structured manner.

Example: A program to print a pattern using nested loops.

for 1 in range(5):

for j in range(i + 1):

print(”\k"’ end:"")

print ()




Combination of "if* and loops:

You can combine conditional statements and loops to create more sophisticated control
flow in your programs.

Example: A program to print odd numbers up to a specified limit.

limit = int (input ("Enter the limit: "))

for num in range(l, limit + 1):

if num % 2 !'= 0:

print (num, end=" ")

When dealing with nested control structures, it is essential to pay attention to code
indentation and maintain proper formatting to ensure the logic is clear and easy to
follow. Additionally, consider the performance implications of nested loops, as they can
lead to increased execution time for larger data sets.

Nested control structures are a powerful tool in procedural programming, as they allow
you to solve complex problems by breaking them down into smaller, more manageable
steps. However, it's crucial to strike a balance between complexity and readability,
ensuring that the code remains understandable and maintainable.



