
Lesson 2: Linear Programming: Basics and
Formulation
Linear Programming (LP) stands as one of the foundational concepts within the realm of
Operations Research, offering a powerful approach to solving optimization problems. At
its core, LP is a mathematical technique designed to find the best possible outcome in
situations where decisions must be made under certain constraints. The elegance of LP
lies in its ability to tackle a wide range of real-world problems, ranging from resource
allocation to production planning, transportation logistics, and more.

The foundation of LP rests upon the principles of linearity, where relationships between
variables are assumed to be linear. This assumption simplifies the mathematical
representation of complex problems, enabling efficient and elegant solutions. In an LP
problem, there are typically two main components: the objective function and the
constraints. The objective function quantifies the goal to be achieved, whether it's
maximizing profit, minimizing costs, or optimizing some other measurable quantity. The
constraints, on the other hand, reflect limitations on the variables, such as resource
availability, capacity constraints, or budgetary limits.

Geometrically, LP can be visualized as finding the best point, often referred to as the
"optimal solution," within a feasible region defined by the constraints. This optimal point
satisfies both the objective of maximizing or minimizing the objective function and the
constraints imposed by the problem. LP problems can have multiple variables and
constraints, making them versatile tools for modeling complex decision-making
scenarios.

One of the most remarkable aspects of LP is its wide applicability. From supply chain
management to finance, manufacturing, and even telecommunications, LP finds its
place in diverse industries. For instance, a company may use LP to determine the
optimal mix of products to manufacture while considering resource limitations and
market demand. Similarly, a transportation company could employ LP to optimize routes
for its vehicles, minimizing fuel costs and travel time while meeting delivery deadlines.

LP problems can be solved using various algorithms, such as the Simplex method,
interior-point methods, and graphical methods for simpler cases. These algorithms
iteratively refine solutions until the optimal point is reached. With advancements in
technology and software, solving large-scale LP problems has become faster and more
efficient, allowing decision-makers to obtain actionable insights promptly.



Formulating LP problems
Formulating a Linear Programming (LP) problem is a structured process that entails
translating real-world decision-making challenges into a mathematical framework. At its
core, LP addresses optimization problems by aiming to maximize or minimize a specific
objective while adhering to defined constraints. The process involves several key steps
that guide the creation of an LP model, making it a powerful tool for efficient
decision-making.

Defining the Objective: The first step in formulating an LP problem is to clearly
articulate the objective. This could involve maximizing profits, minimizing costs, or
optimizing resource utilization. Defining the objective establishes the direction in which
the solution should be sought.

Identifying Decision Variables: Decision variables represent the factors that can be
controlled to achieve the desired outcome. Assigning symbols to these variables allows
for mathematical representation and manipulation. These variables become the building
blocks of the LP model.

Establishing Constraints: Constraints reflect the limitations that decision variables
must satisfy. These limitations could include factors like available resources, production
capacities, or budget constraints. Expressing these constraints as linear inequalities or
equations ensures that solutions align with practical boundaries.

Writing the Objective Function: The objective function quantifies the objective in
terms of the decision variables. It defines how these variables contribute to the overall
goal. The objective function is constructed with coefficients that represent the impact of
each variable on the objective.

Specifying Variable Bounds: In some cases, decision variables may have restrictions
on their potential values. These bounds could stem from operational considerations,
such as minimum or maximum production levels, or financial limitations. Specifying
these bounds provides context for feasible solutions.

Formulating the LP Problem: The culmination of the previous steps results in a
comprehensive LP problem statement. This statement encapsulates the objective



function, decision variables, constraints, and variable bounds. It provides a clear
mathematical representation of the optimization challenge.

Ensuring Linearity: As LP relies on linear relationships, it's important to verify that both
the objective function and constraints adhere to this linearity principle. This means
avoiding operations like exponentiation or multiplication of variables.

Expressing in Standard Form: Transforming the LP problem into standard form
involves representing constraints as equations and ensuring that all variables are
non-negative. Standardizing the problem simplifies the application of LP solver
algorithms.

Interpreting the Results: Upon solving the LP problem, the resulting solution provides
insights into the optimal values of decision variables that achieve the objective while
satisfying constraints. Additionally, the optimal value of the objective function represents
the best achievable outcome based on the given constraints.

Sensitivity Analysis and Iteration: Following solution attainment, sensitivity analysis
can be performed to assess the impact of changes in coefficients or constraints. If
necessary, iterations and refinements can be made to the formulation to align the
solution more closely with desired outcomes.

In summary, the process of formulating an LP problem involves a systematic
progression from defining the objective to expressing the problem in mathematical
terms. This structured approach transforms complex decision-making challenges into
solvable models, enabling efficient and effective optimization across a variety of
real-world scenarios.

Graphical solution method
The graphical solution method serves as a visual approach within the realm of Linear
Programming (LP), designed specifically for problems involving two decision variables.
This method offers an intuitive and geometric way to find optimal solutions by leveraging
graphs to represent constraints, objective functions, and feasible regions. It is
particularly useful for introductory purposes and when dealing with relatively
straightforward LP problems, providing a tangible understanding of the solution space
and aiding decision-making.





Plotting Constraints: The first step of the graphical solution method involves
translating the given constraints into graphical representations. Each constraint
corresponds to a line or boundary on the graph. These lines collectively form a set of
shaded regions on the graph, each reflecting the range of feasible solutions satisfying a
specific constraint. The intersection of these shaded regions constitutes the feasible
region – an area where all constraints are simultaneously met.

Identifying Feasible Region: The feasible region, an essential concept in graphical LP,
is defined by the overlapping areas of the shaded regions. This region represents all
valid solutions within the problem's constraints. Depending on the constraints, the
feasible region can take on various shapes, from polygons to irregular forms.

Objective Function Line: The objective function line, often linear, is plotted on the
same graph. This line reflects the values of the objective function for different
combinations of the decision variables. The slope of the objective function line is
determined by the coefficients of the decision variables in the objective function.

Optimal Solution: The essence of the graphical method lies in pinpointing the optimal
solution – the point within the feasible region where the objective function attains its
maximum or minimum value. The optimal solution is found where the objective function
line intersects the boundaries of the feasible region. Depending on whether the
objective is maximization or minimization, the optimal solution lies on the corresponding
extreme point of the feasible region.

Limitations and Applicability: While the graphical method offers a vivid way to grasp
basic LP concepts, it has inherent limitations. It is limited to problems with two decision
variables due to the challenges of visual representation in higher dimensions.
Furthermore, the graphical approach is most effective when the feasible region is
well-defined and the objective function line is straightforward, making it less suitable for
complex problems with numerous constraints or nonlinear functions.

Advantages and Disadvantages: One significant advantage of the graphical method is
its simplicity and ease of comprehension. It serves as an excellent pedagogical tool,
aiding in introducing LP to learners by rendering abstract concepts tangible. Moreover, it
facilitates quick insights into alternative solutions and the impact of coefficient changes
in the objective function. However, as problems become more intricate, the graphical
method's effectiveness diminishes due to the inability to visualize higher-dimensional
solution spaces and manage complex relationships.



In summary, the graphical solution method is a valuable tool within the realm of Linear
Programming, especially for introductory purposes and simpler problems. While its
capabilities are confined to two-dimensional scenarios with linear constraints and
objectives, it remains an intuitive way to develop insights into optimization processes,
offering a bridge between mathematical abstraction and real-world decision-making.

Simplex method: concept and steps
The Simplex method, a cornerstone of Linear Programming (LP), stands as a highly
effective algorithm developed by George Dantzig in the late 1940s. This method
provides a systematic approach to solving optimization problems characterized by linear
constraints and objectives. Its elegance lies in its ability to navigate the feasible region,
iteratively improving the solution until the optimal point is reached, making it an
essential tool in operations research and decision-making.

At its core, the Simplex method begins with an initial feasible solution and then
methodically advances along the edges of the feasible region. The objective is to
optimize the objective function by increasing one variable while decreasing another at
each step. This iterative process continues until no further improvement can be
achieved, resulting in the identification of the optimal solution.



Steps of the Simplex Method:
Formulate the Initial Simplex Tableau: Start by converting the LP problem into
standard form and setting up the initial Simplex tableau. This tableau incorporates the
coefficients of decision variables within the objective function, introduces slack and
artificial variables for constraints, and dedicates a column for constants. The basic
variables for the initial feasible solution are identified.

Determine the Entering Variable: Select the entering variable, which contributes the
most significant improvement to the objective function. This choice is based on the
largest coefficient within the objective row, indicating the maximum enhancement in the
objective.

Calculate the Ratios: Compute ratios by dividing the right-hand side values by the
coefficients of the entering variable in each row. These ratios depict the extent to which
the entering variable can be increased before violating constraints.

Identify the Exiting Variable: The exiting variable, the one to be decreased, is
determined by choosing the smallest positive ratio. This variable will make way for the
entering variable. In cases where all ratios are non-positive, the problem is unbounded,
implying the absence of an optimal solution.

Pivot Operation: Execute the pivot operation to update the tableau. Begin by dividing
the pivot row by the pivot element, transforming it into 1. Then, utilize row operations to
zero out other coefficients in the pivot column.

Update Basic and Non-Basic Variables: Following the pivot operation, the basic and
non-basic variables undergo modification. The entering variable becomes a basic
variable, and the exiting variable transitions to a non-basic state.

Iterate: Replicate steps 2 to 6 until no further enhancement is attainable. This state is
indicated by the absence of negative coefficients within the objective row.

Optimal Solution: Upon convergence, the tableau mirrors the optimal solution. Basic
variable values reside in the right-hand column, while the objective value is situated at
the bottom of the objective row.

Sensitivity Analysis: Upon obtaining the optimal solution, conduct sensitivity analysis
to assess how variations in coefficients or constraints influence solution validity.



Advantages and Limitations:
The Simplex method efficiently handles moderate-sized LP problems and offers optimal
solutions. However, for scenarios featuring an extensive array of variables and
constraints, or instances of degeneracy, the method might demand numerous iterations,
potentially leading to computational complexities. In such situations, more advanced LP
algorithms, like interior-point methods, could offer more expedient solutions.

In essence, the Simplex method represents a foundational technique in Linear
Programming. With its step-by-step approach and versatility in solving diverse linear
optimization problems, it remains an invaluable asset in the realms of operations
research and strategic decision-making.


