
Lesson 11: Project: Simple Compiler Back-end

Generating Intermediate Code
Intermediate code serves as a bridge between the high-level source code and the
machine code generated by a compiler or interpreter. It provides a simplified yet
structured representation of the original code, making it easier for subsequent phases of
compilation or interpretation. Creating intermediate code representations from parse
trees involves translating the hierarchical structure of the tree into a more abstract,
machine-independent form. Let's explore the process in detail:

1. Understanding Intermediate Code:
Intermediate code acts as an intermediary between the source code and the target
code. It abstracts away the specific details of the source language and platform, making
it easier to perform optimizations and transformations.

2. Defining Intermediate Code Instructions:
Define a set of intermediate code instructions that capture the essential operations and
computations performed by the source code. These instructions are often simpler and
more abstract than the source code's constructs.

3. Traverse the Parse Tree:
Start by traversing the parse tree in a bottom-up manner. As you visit each node,
translate the corresponding construct into one or more intermediate code instructions.
This translation process should take into account the semantics of the original
language's constructs.

4. Generating Intermediate Code:
For each construct encountered during parsing, generate the corresponding
intermediate code instructions. This might involve creating temporary variables,
handling expressions, managing control flow, and more.

5. Handling Expressions:
Expressions in the parse tree can be complex, involving operators, operands, and
precedence. Translate expressions into a series of intermediate code instructions that
represent the desired computation.

6. Managing Control Flow:



For control flow constructs like conditionals and loops, generate intermediate code
instructions that reflect the intended behavior. This might involve creating labels,
generating jumps, and managing conditional branches.

7. Temporary Variables and Registers:
Intermediate code often employs temporary variables or registers to hold intermediate
values during computations. These variables help manage complex expressions and
store temporary results.

8. Symbol Tables and Scopes:
Use symbol tables to keep track of variables, their types, and their scopes. Symbol
tables assist in generating intermediate code that references variables correctly and
handles variable declarations and assignments.

9. Optimization Opportunities:
While creating intermediate code, identify opportunities for optimization. Some simple
optimizations can be performed at this stage, such as constant folding, algebraic
simplification, and common subexpression elimination.

10. Abstracting High-Level Constructs:
The goal of generating intermediate code is to abstract away high-level constructs while
preserving the intended behavior of the source code. The intermediate code should be
agnostic to the specifics of the source and target platforms.

11. Modular Design:
Organize the process of generating intermediate code into modular functions or classes.
This helps maintain a clear separation of concerns and promotes maintainability.

12. Error Handling and Debugging:
Implement error handling and debugging mechanisms while generating intermediate
code. Detect and report errors related to invalid operations, type mismatches, or other
issues.

13. Documentation:
Document the set of intermediate code instructions and their corresponding meanings.
This documentation aids developers who work with the intermediate representation.

In summary, creating intermediate code representations from parse trees involves
translating the hierarchical structure of the tree into a more abstract,
machine-independent form. This process enables further optimization, transformation,



and analysis of the code before generating the final target code. By adhering to
well-defined instructions and considering the semantics of the original language, you
can create an intermediate representation that captures the essence of the source code
while facilitating subsequent compilation or interpretation stages.

Generating three-address code from the parsed syntax tree
Three-address code is an intermediate representation of code that simplifies complex
expressions and control flow structures into a format that is easier to analyze, optimize,
and generate target code from. It breaks down expressions into a series of simple
operations involving at most three operands. Generating three-address code from a
parsed syntax tree is a crucial step in the compilation process. Let's delve into the
concept and process of generating three-address code:

1. Understanding Three-Address Code:
Three-address code is a low-level, machine-independent representation that serves as
a bridge between high-level source code and machine code. It abstracts away complex
language constructs and expressions, making it easier to perform optimizations and
generate target code.

2. Basic Components of Three-Address Code:
A three-address code instruction consists of the following components:

● Result variable: The variable that will store the result of the operation.
● Operator: The operation to be performed, such as addition, subtraction,

multiplication, etc.
● Operands: The values or variables involved in the operation.

3. Generating Three-Address Code:
● Step 3.1: Traverse the Syntax Tree

Start by traversing the parsed syntax tree in a bottom-up manner. As you visit each
node, consider its type and the grammar rule it corresponds to.

● Step 3.2: Handle Expressions
For expression nodes in the syntax tree, decompose the expression into a series of
simpler operations involving at most three operands. Each of these operations becomes
a separate three-address code instruction.

● Step 3.3: Generate Temporary Variables



When translating expressions, you might need temporary variables to hold intermediate
results. Generate unique names for these temporary variables and track their usage.

● Step 3.4: Map Language Constructs to Instructions
For each construct in the syntax tree (statements, expressions, control flow), map them
to the appropriate three-address code instructions. Consider the semantics of the
original language and generate instructions that represent the same behavior.

● Step 3.5: Assignments and Declarations
Translate assignments and declarations into three-address code instructions.
Assignments involve storing values in variables, and declarations involve creating new
variables with their initial values.

● Step 3.6: Control Flow
Translate control flow constructs like conditionals and loops into corresponding
three-address code instructions. This might involve generating labels, conditional jumps,
and unconditional jumps.

4. Handling Symbol Tables and Scopes:
Use symbol tables to keep track of variables and their types. This information is crucial
for generating correct three-address code instructions that reference variables
appropriately.

5. Error Handling and Debugging:
Implement error handling mechanisms while generating three-address code. Detect and
report errors related to unsupported operations, type mismatches, or other issues.

6. Optimization Opportunities:
While generating three-address code, identify opportunities for optimization. You can
apply basic optimizations like constant folding, algebraic simplification, and common
subexpression elimination.

7. Documentation:
Document the set of supported three-address code instructions, their meanings, and the
semantics they represent. This documentation assists developers and toolchain
components working with the intermediate representation.

In conclusion, generating three-address code from a parsed syntax tree involves
breaking down complex expressions and language constructs into simpler instructions
involving at most three operands. This process creates an intermediate representation



that is easier to analyze, optimize, and eventually generate target code from. By
understanding the semantics of the original language and mapping constructs to
appropriate instructions, you can create a meaningful three-address code
representation that captures the essence of the source code.

Applying Basic Optimization Techniques
Optimization is a pivotal phase in the compilation process, serving to enhance the
quality and efficiency of the code generated from the source program. Among the
foundational optimization techniques, constant folding and common subexpression
elimination stand out as effective strategies for improving the performance and
readability of the resulting executable code. By integrating these techniques into the
generated intermediate code, developers can reap significant benefits for the final
output.

Constant Folding: Streamlining Expressions with Known Values
Constant folding is a fundamental optimization technique that focuses on streamlining
expressions by evaluating those that solely consist of constant values during the
compilation process. Instead of deferring these computations to runtime, constant
folding calculates the results beforehand and substitutes the computed constants into
the expressions. This preemptive computation eliminates the need for repetitive
calculations, subsequently reducing the runtime overhead.

The primary advantage of constant folding lies in its ability to significantly enhance
runtime performance. By sidestepping redundant calculations and replacing them with
their precomputed constant values, the optimized code executes faster and more
efficiently. Moreover, the resulting code often exhibits a cleaner and more concise
structure, as superfluous expressions are replaced with their concrete values.

Common Subexpression Elimination: Reducing Redundancy
Common subexpression elimination (CSE) is another crucial optimization technique
aimed at curtailing redundancy within expressions. By identifying recurring
computations and eliminating their duplication, CSE enhances the efficiency of the
code. When the compiler encounters expressions that have already been computed, it
reuses the existing results instead of recomputing them, leading to streamlined code
execution.



The benefits of CSE are multi-fold. Beyond improved efficiency, the technique also
contributes to a reduction in memory usage. The reutilization of previously computed
values translates into saved memory resources that would otherwise be allocated for
storing duplicate results. Moreover, the removal of redundant computations simplifies
the generated code, fostering easier comprehension and maintenance.

Elevating Code Quality through Optimization:
Incorporating these basic optimization techniques into the generated intermediate code
yields several tangible improvements in the overall quality of the software. Notably,
these techniques bolster efficiency by reducing runtime overhead and enhancing
performance through the elimination of redundant calculations. The resulting code is
marked by its simplicity, where intricate expressions are distilled into comprehensible,
straightforward operations. This not only fosters better readability but also reduces the
likelihood of errors arising from intricate calculations.

Moreover, optimized code holds the potential to contribute to more efficient utilization of
system resources. By minimizing unnecessary computations, the software conserves
valuable CPU cycles and memory, which can subsequently lead to improved user
experiences.

In conclusion, the integration of basic optimization techniques such as constant folding
and common subexpression elimination into the generated intermediate code
significantly advances the quality and efficiency of the compiled output. By harnessing
these methods, developers can ensure that their software is not only high-performing
but also easier to understand, maintain, and optimize in the long run.

Mapping to Target Machine Instructions
The culmination of the compilation journey brings us to the final phase: transforming the
optimized intermediate code into target machine instructions. This transformation is the
key to enabling the program to run effectively on the specific hardware architecture it's
intended for. This phase involves intricate tasks such as instruction selection and
memory addressing, which together ensure that the generated machine code aligns
with the hardware's capabilities and executes efficiently.

Instruction Selection: Crafting Machine-Level Operations
Instruction selection involves a strategic process of translating the abstract operations
present in the optimized intermediate code into concrete machine instructions. This



pivotal step bridges the semantic gap between high-level programming constructs and
the machine's low-level operations. The compiler carefully evaluates the characteristics
of the target architecture's instruction set and maps each high-level operation to a
sequence of machine instructions that achieves the same functionality. This process
necessitates a deep understanding of the target hardware's capabilities, including
instruction availability, pipeline structure, and optimization opportunities.

Moreover, instruction selection goes beyond mere translation; it's an opportunity to
optimize execution time and resource usage. The compiler endeavors to select
instructions that take full advantage of the hardware's features, minimizing overhead
and improving performance. It considers factors like instruction latencies, data
dependencies, and potential pipeline stalls to produce efficient sequences of machine
instructions.

Memory Addressing: Navigating the Storage Hierarchy
Memory addressing is another critical aspect of code transformation, particularly when
dealing with data storage and retrieval. Here, the compiler navigates the intricate
landscape of memory addressing modes, determining how data is accessed in memory.
Various addressing modes, such as direct, indexed, and indirect addressing, offer
flexibility in how data is retrieved from memory or stored back.

In the context of transforming optimized intermediate code, memory addressing involves
calculating effective addresses for memory operations. The compiler orchestrates base
addresses, offsets, and other relevant information to ensure that data access is
performed accurately and efficiently. Furthermore, the compiler may rearrange memory
access patterns to optimize cache usage, mitigate data hazards, and enhance overall
execution speed. This process underscores the compiler's role in orchestrating memory
access for optimal performance.

Generating Target Machine Code: Bridging Abstraction to Reality
The culmination of instruction selection and memory addressing results in the
generation of target machine code. At this juncture, the compiler has meticulously
translated high-level operations and memory access patterns into sequences of
machine instructions that embody the program's behavior. These instructions adhere to
the strict formatting requirements of the target architecture, with opcode fields, register
designations, and immediate values meticulously organized.

The generated machine code represents the bridge between the abstract world of
programming and the tangible reality of hardware execution. It encapsulates the
transformations and optimizations applied throughout the compilation process, blending



program semantics with hardware operations. The compiler's proficiency in accurately
converting intermediate code into machine instructions ensures that the final executable
code behaves as expected while exploiting the hardware's capabilities for efficient
execution.

Managing Registers and Resources: Efficient Execution
As the compiler finalizes the transformation, it navigates the intricate domain of register
allocation and resource management. Register allocation involves mapping
intermediate values to hardware registers, reducing memory access and speeding up
execution. This process is essential for optimizing performance and minimizing the
time-consuming process of fetching data from memory.

However, the number of available registers is often limited, leading to scenarios where
more variables need to be stored than there are registers available. In such cases, the
compiler employs strategies to decide which variables should be kept in registers and
which ones should be spilled to memory. This delicate balance requires careful
consideration to ensure optimal performance without overwhelming available resources.

Finalizing the Process: Bringing Machine Code to Life
With the transformation complete, the generated target machine instructions are
consolidated into a format that can be executed by the computer's hardware. This often
takes the form of binary files, object files, or executable files that encapsulate the
generated machine code. These files are prepared for interaction with the operating
system and provide the instructions that the CPU can interpret and execute.

Before concluding the process, thorough testing and validation are imperative. Rigorous
testing methodologies, including unit testing and benchmarking, are employed to verify
the correctness, efficiency, and performance of the generated machine code. This
validation process ensures that the transformed code aligns with the intended behavior
of the original program and effectively leverages the hardware's capabilities.

Additionally, comprehensive documentation and tooling play a pivotal role in this phase.
Documentation provides insights into the compilation process, the intricacies of the
target architecture, and the intricacies of the generated machine code. Tools and utilities
aid in inspecting, analyzing, and understanding the generated machine code, facilitating
debugging, optimization, and maintenance efforts.

In summation, the transformation of optimized intermediate code into target machine
instructions is the culmination of the compilation journey. This phase involves intricate
decision-making, strategic mapping of operations, and careful management of



resources to produce machine code that seamlessly interacts with the hardware. By
bridging the gap between high-level programming and hardware execution, compilers
play a pivotal role in producing efficient, performant, and functional executable code that
powers modern software applications.


