
Lesson 8: Numerical Methods for Ordinary
Differential Equations

Introduction to Ordinary Differential Equations (ODEs)
Ordinary Differential Equations (ODEs) are mathematical equations that involve an
unknown function and its derivatives with respect to a single independent variable. They
are used to describe relationships between a function and its rates of change, capturing
various dynamic processes and phenomena in fields such as physics, engineering,
biology, and economics.

ODEs are of utmost importance in modeling systems that evolve over time. They
provide a fundamental framework for understanding and analyzing dynamic
phenomena. ODEs allow us to mathematically express how a variable changes with
respect to time or another independent variable. By studying the behavior of ODE
solutions, we can gain insights into the underlying mechanisms of complex systems,
make predictions about their future states, and optimize their performance.

ODEs can be classified into two main types: initial value problems (IVPs) and boundary
value problems (BVPs).

Initial Value Problems (IVPs):
In an IVP, the goal is to find a solution to an ODE that satisfies both the differential
equation itself and an initial condition. The initial condition specifies the value of the
unknown function at a particular point in the independent variable. Solving an IVP
allows us to determine the behavior of the system from a given starting point. This is
particularly useful for predicting future states or simulating dynamic systems over time.
IVPs find wide applications in various fields, such as population dynamics, radioactive
decay, and electrical circuits.

Boundary Value Problems (BVPs):
In a BVP, the objective is to find a solution to an ODE that satisfies the differential
equation as well as a set of conditions at different points in the independent variable.
These conditions, known as boundary conditions, impose constraints on the behavior of
the unknown function at the boundaries of the domain. Solving a BVP allows us to
determine the function that satisfies both the differential equation and the boundary
conditions. BVPs often arise in problems where the behavior of the system is



constrained by external factors or physical boundaries. Examples of BVPs include
problems involving heat conduction, fluid flow, and structural mechanics.

Both IVPs and BVPs have significant applications in science and engineering. They
provide powerful mathematical tools for modeling and analyzing various phenomena.
ODEs and their associated problems are widely used in physics, engineering, biology,
chemistry, economics, and many other fields. The solutions of ODEs allow us to
understand the behavior of dynamic systems, make predictions about their future
states, optimize their performance, and design efficient and reliable solutions.

By studying ODEs, mastering the techniques for solving IVPs and BVPs, and analyzing
their solutions, we gain a deeper understanding of the dynamics of the natural world
and acquire essential tools for scientific inquiry, technological innovation, and
engineering design. ODEs form a cornerstone of mathematical modeling and play a
fundamental role in advancing knowledge and solving real-world problems.

Initial Value Problems and Numerical Integration Methods
Initial Value Problems (IVPs) are a fundamental type of problem in the realm of ordinary
differential equations (ODEs). They play a crucial role in understanding dynamic
systems and modeling their behavior over time.

An IVP consists of two main components: the differential equation and the initial
condition. The differential equation represents the relationship between an unknown
function and its derivatives. It describes how the rate of change of the function depends
on its current value and potentially other variables. The form of the differential equation
varies depending on the specific problem being modeled. It can range from simple
first-order equations to complex higher-order equations. The goal is to find a function
that satisfies the differential equation.

In addition to the differential equation, an IVP requires an initial condition. The initial
condition specifies the values of the unknown function and its derivatives at a specific
point in the independent variable. It serves as the starting point for solving the IVP and
provides crucial information about the system's behavior. The initial condition typically
consists of the value of the unknown function at the initial point, as well as the value of
its derivative(s) if applicable.



To solve an IVP, we seek the function that simultaneously satisfies the differential
equation and the initial condition. This involves applying appropriate techniques and
methods for solving ODEs. Depending on the complexity of the problem, analytical
methods such as separation of variables, integrating factors, or power series
expansions may be employed. Alternatively, numerical methods like Euler's method or
the Runge-Kutta method can be used to approximate the solution.

IVPs find extensive applications across various scientific, engineering, and
mathematical fields. They are essential for modeling and analyzing dynamic systems,
simulating physical processes, and predicting future states. Examples of IVPs can be
found in diverse domains, including population dynamics, celestial mechanics, chemical
reactions, electrical circuits, and mechanical systems.

Formulating an IVP requires a clear understanding of the problem at hand, including the
physical or mathematical relationships involved. The selection of an appropriate
differential equation is crucial for accurately representing the system dynamics.
Furthermore, the initial condition should reflect the system's initial state, providing a
starting point for solving the problem.

By solving IVPs, we gain valuable insights into the behavior of dynamic systems, make
predictions about their future states, and study the effects of different parameters or
initial conditions. The solutions to IVPs allow us to understand how systems evolve over
time and provide a foundation for making informed decisions in various scientific,
engineering, and mathematical contexts.

Initial Value Problems (IVPs) involve the solution of ordinary differential equations
(ODEs) along with an initial condition. They capture the dynamics of systems and play a
pivotal role in modeling and analyzing various phenomena. The formulation of an IVP
comprises a differential equation that describes the behavior of the unknown function
and an initial condition that specifies its values at a given point. By solving IVPs, we
gain insights into system behavior, predict future states, and explore the intricate
dynamics of real-world processes.

Euler's method
Euler's method is a numerical technique used to approximate the solution of an initial
value problem (IVP) for ordinary differential equations (ODEs). It is one of the simplest
and most intuitive methods for numerical integration.



The method is based on the idea of approximating the solution by taking small steps
along the independent variable. It proceeds iteratively, updating the approximate
solution at each step. The steps are determined by the chosen step size, which
represents the distance between consecutive points in the independent variable.

Here's a step-by-step explanation of Euler's method:

1. Given an initial value problem in the form of a first-order ODE:
dy/dx = f(x, y), with initial condition y(x₀) = y₀.

2. Choose a step size h, which determines the distance between consecutive points
in the independent variable. The smaller the step size, the more accurate the
approximation, but at the cost of increased computation.

3. Start with the initial condition: x = x₀, y = y₀.

4. Iterate through the following steps until the desired endpoint is reached:
a) Compute the slope at the current point using the ODE:

m = f(x, y).
b) Calculate the new values for x and y at the next step:

x = x + h,
y = y + h * m.

5. Repeat step 4 for the desired number of iterations or until the desired endpoint is
reached.

Euler's method essentially approximates the solution by estimating the slope of the
function at each step and using that slope to update the values of x and y. The smaller
the step size, the closer the approximation becomes to the true solution.

However, it's important to note that Euler's method has limitations. It can introduce
significant errors, especially when the step size is large or when dealing with ODEs that
exhibit rapid changes or non-linear behavior. It is a first-order method, meaning its error
is proportional to the step size h. Therefore, it may not provide accurate results for
highly sensitive systems or problems requiring high precision.

Despite its limitations, Euler's method serves as a foundational concept in numerical
methods for ODEs and provides an intuitive understanding of how numerical integration
can be used to approximate solutions. More advanced and accurate methods, such as



the Runge-Kutta methods, have been developed to improve upon the limitations of
Euler's method and provide more accurate numerical solutions for IVPs.

Runge-Kutta methods
Runge-Kutta methods are a family of numerical techniques used for solving initial value
problems (IVPs) in ordinary differential equations (ODEs). These methods provide more
accurate approximations of the solution compared to simpler methods like Euler's
method. Among the various Runge-Kutta methods, the fourth-order Runge-Kutta (RK4)
method is widely used and renowned for its balance between accuracy and
computational efficiency.

The general idea behind Runge-Kutta methods is to estimate the solution at each step
by considering a weighted average of function evaluations at multiple intermediate
points within the step. The RK4 method, in particular, involves evaluating the function at
four intermediate points.

Here's an overview of the fourth-order Runge-Kutta method:

1. Given an initial value problem in the form of a first-order ODE:
dy/dx = f(x, y), with initial condition y(x₀) = y₀.

2. Choose a step size h, which determines the distance between consecutive points
in the independent variable.

3. Start with the initial condition: x = x₀, y = y₀.

4. Iterate through the following steps until the desired endpoint is reached:
a) Compute the slope at the current point using the ODE:

k₁ = f(x, y).
b) Estimate the slope at the midpoint using a fraction of the step size:

k₂ = f(x + h/2, y + (h/2) * k₁).
c) Estimate the slope at another intermediate point:

k₃ = f(x + h/2, y + (h/2) * k₂).
d) Estimate the slope at the endpoint using the full step size:

k₄ = f(x + h, y + h * k₃).
e) Update the values of x and y at the next step:

x = x + h,
y = y + (h/6) * (k₁ + 2k₂ + 2k₃ + k₄).



The RK4 method calculates the weighted average of these four slopes to approximate
the next point on the solution curve. By considering multiple intermediate points, RK4
achieves a higher degree of accuracy compared to simpler methods. The error in RK4
is proportional to the fourth power of the step size, making it a fourth-order method.

The fourth-order Runge-Kutta method strikes a good balance between accuracy and
computational efficiency, making it a popular choice for numerical integration of ODEs. It
provides reasonably accurate results for a wide range of ODE problems and is widely
used in various scientific, engineering, and mathematical applications.

However, it's important to note that even RK4 has limitations. Extremely sensitive or
highly nonlinear systems may require more advanced techniques or adaptive step sizes
to accurately capture their behavior. Nevertheless, the fourth-order Runge-Kutta method
remains a powerful and widely used numerical method for approximating solutions to
initial value problems in ordinary differential equations.

Boundary Value Problems and Shooting Methods
Boundary Value Problems (BVPs) are a class of problems in ordinary differential
equations (ODEs) that involve finding a solution to an ODE subject to conditions
specified at different points in the independent variable. BVPs arise when the behavior
of the system is constrained by external factors or physical boundaries. They play a vital
role in understanding systems that exhibit boundary-dependent behavior.

The formulation of a BVP consists of three main components: the differential equation,
the boundary conditions, and the domain of the independent variable.

1. Differential Equation:
The differential equation represents the mathematical relationship between an unknown
function and its derivatives. It describes how the rate of change of the function depends
on its current value and potentially other variables. The form and complexity of the
differential equation depend on the specific problem being modeled. It can range from
simple first-order equations to higher-order equations. The solution to the BVP is the
function that satisfies the given differential equation.

2. Boundary Conditions:
Boundary conditions are the conditions that the solution must satisfy at the boundaries
of the domain. They specify the behavior of the unknown function at these specific



points. The number and type of boundary conditions depend on the problem at hand
and the nature of the system being studied. Examples of boundary conditions include
specifying the value of the unknown function, its derivative, or a combination of both, at
certain points in the domain.

3. Domain:
The domain is the interval or region over which the BVP is defined. It represents the
range of the independent variable for which the solution is sought. The boundary
conditions are applied at the endpoints of this domain. The domain can be finite or
infinite, depending on the problem's nature and the physical constraints involved.

To solve a BVP, we need to find the function that satisfies both the differential equation
and the boundary conditions. This involves applying appropriate methods and
techniques for solving ODEs subject to boundary conditions. Analytical methods, such
as separation of variables, eigenfunction expansions, or Green's functions, may be
employed for specific cases. Alternatively, numerical methods like shooting methods,
finite difference methods, or finite element methods can be utilized for more general
situations.

BVPs find widespread applications in various scientific, engineering, and mathematical
fields. They are essential for modeling systems with prescribed behavior at the
boundaries. BVPs are encountered in problems related to heat conduction, fluid flow,
structural mechanics, quantum mechanics, optimal control, and many other areas.

Formulating a BVP requires a clear understanding of the problem, including the physical
or mathematical relationships involved. It involves selecting an appropriate differential
equation that accurately represents the system's dynamics, specifying the relevant
boundary conditions that reflect the system's behavior at the boundaries, and identifying
the domain over which the solution is sought.

Solving BVPs provides insights into how systems behave within the specified
boundaries and how boundary conditions influence the system's response. BVPs
enable the design of solutions that satisfy specific constraints or achieve desired
outcomes. They are widely used in scientific research, engineering design, and
mathematical modeling to analyze systems subject to external influences or constraints.
By studying and solving BVPs, we can gain a deeper understanding of the behavior of
real-world phenomena and develop effective strategies for addressing complex
boundary-dependent problems.



Shooting method for solving BVPs
The shooting method is a numerical technique widely used for solving boundary value
problems (BVPs) in ordinary differential equations (ODEs). It is particularly effective
when the given boundary conditions are specified at different points along the
independent variable. The shooting method transforms the BVP into an initial value
problem (IVP), which can then be solved using standard numerical methods like the
Runge-Kutta method.

Here's a more detailed explanation of the shooting method:

1. Given a BVP in the form of a second-order ODE:
d²y/dx² = f(x, y, dy/dx), subject to boundary conditions y(a) = y₁ and y(b) = y₂.

2. The shooting method starts by assuming an initial value for the derivative dy/dx at the
starting point a. This initial value is often referred to as the "shooting parameter" and is
denoted as α.

3. The second-order ODE is converted into a system of two first-order ODEs by
introducing an auxiliary variable z = dy/dx:
dz/dx = f(x, y, z), with initial conditions y(a) = y₁ and z(a) = α.

4. The IVP resulting from step 3 is then solved numerically using a standard method
such as the Runge-Kutta method. Starting from the initial conditions y(a) = y₁ and z(a) =
α, the method approximates the solution y(x) and z(x) over the interval [a, b].

5. After obtaining the numerical solution, the method checks if the boundary condition
y(b) = y₂ is satisfied. If the condition is met, the shooting method has successfully found
a solution to the BVP. If not, the initial value of α is adjusted, and steps 3-5 are repeated
until the desired boundary condition is satisfied within a specified tolerance.

The shooting method derives its name from the analogy of an archer shooting an arrow
towards a target. The shooting parameter α represents the initial velocity given to the
arrow, and the adjustment of α corresponds to refining the aim until the arrow hits the
target, or in this case, satisfies the desired boundary condition.

The shooting method is a powerful tool for solving BVPs, especially when the boundary
conditions are specified at different points. It allows the conversion of a BVP into an IVP,
simplifying the problem by transforming it into an initial value problem. The numerical
techniques employed, such as the Runge-Kutta method, provide accurate solutions to



the IVP. By iteratively adjusting the initial value of the derivative, the shooting method
efficiently finds a solution that satisfies the given boundary conditions.

Examples of applications of the shooting method include:

1. The solution of a BVP for a simple harmonic oscillator:
d²y/dx² + k²y = 0, with boundary conditions y(0) = 0 and y(π/2) = 1.
By applying the shooting method, an initial value for dy/dx is assumed, and the

solution is iteratively adjusted until the desired boundary condition is met.

2. The determination of optimal control in optimal control theory:
The shooting method is employed to solve BVPs arising in optimal control problems,

where the goal is to find the control function that optimizes a given objective under
certain constraints.

In summary, the shooting method is a numerical technique used to solve boundary
value problems (BVPs) in ordinary differential equations (ODEs). By transforming the
BVP into an initial value problem (IVP), the method facilitates the use of standard
numerical methods for solution approximation. The shooting method is versatile and
widely applicable, providing a powerful tool for tackling BVPs with non-uniform boundary
conditions in various scientific, engineering, and mathematical disciplines.

Stiff Systems and Implicit Methods
Stiff systems of ordinary differential equations (ODEs) refer to sets of equations where
the solution exhibits widely varying timescales. These systems arise in scientific and
engineering applications involving phenomena with multiple underlying processes
operating at vastly different rates. Stiff systems have several distinct characteristics that
set them apart from non-stiff systems.

One characteristic of stiff systems is the presence of a significant disparity in the rates of
change of the dependent variables. Some variables evolve rapidly, while others change
much more slowly. This disparity in timescales poses challenges for numerical
computations as traditional integration methods may require extremely small step sizes
to accurately capture the rapid variations without sacrificing computational efficiency.



Stability and numerical accuracy are major concerns when solving stiff systems.
Stability refers to the ability of a numerical method to produce solutions that do not
exhibit unbounded growth or oscillations. Achieving accurate approximation of the
solution is crucial to capture the behavior of the system reliably. Conventional explicit
methods often struggle to simultaneously satisfy stability and accuracy requirements in
stiff systems.

The stiffness ratio quantifies the disparity in timescales within a stiff system. It
represents the ratio between the fastest and slowest timescales present in the system.
Higher stiffness ratios indicate more pronounced disparities and pose greater
challenges for numerical solutions.

Implicit methods play a fundamental role in numerically integrating stiff systems. Unlike
explicit methods, implicit methods involve solving equations that incorporate both
present and future values of the dependent variables. Implicit methods are generally
more stable and can handle larger step sizes, making them well-suited for stiff systems.
However, they often require solving nonlinear equations, which adds computational
complexity to the numerical solution process.

Stiff systems demand additional computational resources compared to non-stiff
systems. The use of implicit methods and smaller step sizes increases the
computational complexity and runtime. Striking a balance between accuracy and
computational efficiency is crucial when dealing with stiff systems.

Stiff systems can be found in various applications. For example, chemical reaction
kinetics involving reactions with vastly different timescales, electrical circuit simulations
with components of disparate timescales, power systems during transient events, and
biological systems with biochemical reactions that exhibit varying rates.

Effectively dealing with stiff systems requires specialized numerical techniques tailored
to their unique characteristics. Implicit methods, such as backward differentiation
formulas (BDF) or Rosenbrock methods, are commonly employed due to their stability
and accuracy. Techniques such as model simplification, re-parameterization, or system
reformulation may also be employed to alleviate stiffness and reduce the disparities in
timescales.

Stiff systems of ODEs present challenges in numerical computations due to the
significant disparities in the rates of change of the dependent variables. Their
characteristics include timescale disparities, stability and accuracy requirements,
implicitness, high stiffness ratios, and increased computational cost. Understanding and



effectively solving stiff systems are crucial in various fields of science and engineering to
accurately simulate and analyze complex phenomena involving multiple processes
operating at different timescales.

Implicit methods for solving stiff systems
Implicit methods play a crucial role in solving stiff systems of ordinary differential
equations (ODEs). These methods are designed to handle the challenges posed by the
disparity in timescales and the stability requirements of stiff systems. Two commonly
used implicit methods for solving stiff systems are the backward Euler method and the
trapezoidal rule.

The backward Euler method is an implicit numerical integration method that
approximates the solution of a stiff ODE system at discrete time steps. It involves
replacing the derivative in the ODEs with a backward difference approximation, resulting
in a set of nonlinear algebraic equations. These equations are then solved iteratively
using techniques like Newton's method to obtain the updated solution at each time step.
The backward Euler method is known for its unconditional stability, meaning it can
handle arbitrarily large step sizes without sacrificing stability. However, it sacrifices some
accuracy compared to explicit methods.

The trapezoidal rule, also known as the trapezoidal method or the Crank-Nicolson
method, is another popular implicit method for solving stiff systems. It is a combination
of the forward Euler method (explicit) and the backward Euler method (implicit). The
trapezoidal rule approximates the solution by averaging the forward and backward Euler
estimates at each time step. It offers higher accuracy compared to the backward Euler
method while still maintaining stability for stiff systems.

Implicit methods have several advantages when it comes to solving stiff systems. They
provide unconditional stability, allowing for larger time steps without compromising the
stability of the solution. This stability is crucial for accurately simulating stiff systems with
disparate timescales. Implicit methods are also better suited for handling stiffness
compared to explicit methods, as they can capture the slow dynamics of stiff
components more effectively, avoiding numerical instabilities. Additionally, they enable
the use of larger step sizes, resulting in faster computations compared to explicit
methods.

However, there are some limitations to consider when using implicit methods. They
require solving systems of nonlinear equations at each time step, adding computational
overhead compared to explicit methods. The computational cost increases as the size



of the system grows. Additionally, the iterative nature of solving the nonlinear equations
in implicit methods may introduce convergence issues, particularly if the initial guess for
the solution is far from the true solution. Convergence strategies, such as using
appropriate initial guesses or adaptive algorithms, may be necessary to overcome these
challenges.


