
Lesson 8: Introduction to Recursive and Recursively
Enumerable Languages
Recursive and recursively enumerable languages are two classes of languages in
formal language theory. These classes describe different levels of computability and
decidability. Let's provide an introduction to recursive and recursively enumerable
languages:

Recursive Languages:
Recursively enumerable languages, also known as computably enumerable languages
or simply RE languages, are a broader class of languages that can be recognized by a
Turing machine that may halt and accept for strings belonging to the language, but may
run indefinitely or loop for strings that do not belong to the language. In other words, a
Turing machine for an RE language may not always produce a "no" answer for inputs
that are not part of the language.

Recursively enumerable languages can be thought of as languages for which there
exists a Turing machine that, when presented with a string belonging to the language,
eventually halts and accepts the string. However, if the string does not belong to the
language, the Turing machine may either halt and reject, loop indefinitely, or not halt at
all. This characteristic makes recursively enumerable languages more general and less
restrictive compared to recursive languages.

Recursively enumerable languages are closed under union and concatenation
operations, but not under intersection and complement operations. Examples of
recursively enumerable languages include the language of all valid Turing machine
encodings, the language of all valid programs in a given programming language, and
the language generated by a grammar that generates an infinite number of strings.

Recursively enumerable languages
Recursively enumerable languages, also known as recursively enumerable or
semi-decidable languages, are a broader class of languages within formal language
theory. Unlike recursive languages, which have a decision procedure to determine
membership in the language, recursively enumerable languages have a more relaxed
requirement.



A language is considered recursively enumerable if there exists a Turing machine that,
on any input string belonging to the language, eventually halts and accepts the string.
This means that for strings in the language, the Turing machine will always accept them.
However, for strings not in the language, the Turing machine may either halt and reject
the string or continue running indefinitely without reaching a definitive conclusion.

Recursively enumerable languages can be effectively enumerated, which means there
exists a Turing machine that can generate all the strings in the language. This
enumeration process will eventually produce all the strings in the language, but it may
not terminate on strings not in the language. In other words, the Turing machine will
either output strings in the language or continue running indefinitely without outputting
anything for strings not in the language.

It's important to note that recursively enumerable languages are not closed under
certain operations. For example, they are closed under union and concatenation. If two
recursively enumerable languages L1 and L2 are given, there exist Turing machines
that can enumerate the strings in L1 and L2. By combining these Turing machines, a
new Turing machine can be constructed to enumerate the strings in the union (L1 ∪ L2)
or the concatenation (L1L2) of the two languages.

However, recursively enumerable languages are not closed under intersection or
complement. That means there is no guarantee that the intersection of two recursively
enumerable languages or the complement of a recursively enumerable language will
also be recursively enumerable.

The notion of recursively enumerable languages expands the set of languages beyond
the scope of recursive languages. While recursive languages have a decision procedure
to determine membership, recursively enumerable languages provide a more relaxed
condition where membership can be recognized but not necessarily decided with
certainty. This distinction has significant implications for the study of computability,
complexity, and the limits of computation.

In summary, recursive languages are a class of languages for which a Turing machine
can always determine membership in a finite amount of time, while recursively
enumerable languages are a broader class for which a Turing machine can eventually
halt and accept strings belonging to the language. Recursive languages are a subset of
recursively enumerable languages, representing languages with stronger computational
properties.



Decidable Problems and Their Relation to Recursive
Languages

Understanding decidability in the context of formal languages
Decidability is a fundamental concept in formal language theory that relates to the ability
to algorithmically determine whether a given string belongs to a language or not. It
pertains to the existence of a decision procedure or algorithm that can provide a
definitive answer, either accepting or rejecting, for any input string.

In the context of formal languages, decidability refers to the ability to decide
membership in a language. A language is said to be decidable if there exists an
algorithm or Turing machine that can, for any input string, halt and produce the correct
answer, indicating whether the string belongs to the language or not.

Decidable languages are also known as recursive languages. They can be effectively
recognized, with a decision procedure that guarantees a definite answer for any given
input. Recursive languages can be recognized by specific types of machines or formal
systems, such as deterministic finite automata (DFAs), pushdown automata, or Turing
machines.

The decidability of a language implies that there is an algorithmic approach to solve
problems related to that language. It enables the automation of certain tasks and
provides a foundation for computational analysis and problem-solving. For example, if a
language is decidable, we can design algorithms to search for patterns in strings, check
syntactic correctness, or perform other language-specific operations.

On the other hand, undecidable languages, also known as non-recursive languages,
lack decision procedures or algorithms that can provide a definitive answer for every
input string. Undecidability arises when there are instances where the algorithm or
Turing machine may run indefinitely without halting or fail to produce a conclusive result.

The concept of decidability has significant implications for the study of formal languages
and computation. It helps establish boundaries between languages that can be
effectively processed and those that are beyond the reach of algorithms. Undecidable
languages challenge the limits of computation, highlighting the existence of problems
that cannot be solved algorithmically.



Decidability plays a crucial role in various areas of computer science, such as compiler
design, programming language theory, formal verification, and algorithmic complexity
analysis. It provides a theoretical framework for understanding the computational
properties of languages and serves as a foundation for developing efficient algorithms
and solving practical problems in these domains.

Definition and properties of decidable problems
A decidable problem, also known as a computable problem, is a problem for which
there exists an algorithm or a Turing machine that can provide a definite answer (either
"yes" or "no") for any instance of the problem. In other words, a decidable problem has
a decision procedure that halts and produces the correct answer for all inputs.

Formally, a problem P is decidable if there exists an algorithm that, given any input x,
will terminate in a finite amount of time and output the correct answer, indicating
whether x satisfies the property defined by the problem P.

Properties of Decidable Problems:

1. Correctness: A decidable problem guarantees that the algorithm or Turing machine
will produce the correct answer for all inputs. The decision procedure is designed to
accurately determine whether an instance belongs to the set defined by the problem.

2. Termination: A decidable problem ensures that the decision procedure always
terminates. The algorithm or Turing machine halts on every input, providing a definitive
answer within a finite amount of time.

3. Determinism: The decision procedure for a decidable problem is deterministic,
meaning that it follows a precisely defined sequence of steps for each input. Given the
same input, the decision procedure will always produce the same output.

4. Completeness: A decidable problem covers all possible inputs. Every instance of the
problem can be classified as either satisfying the defined property or not.

5. Formal Definition: Decidable problems can be formally specified using languages or
formal systems. They are often represented by sets of strings, and the decision
procedure determines membership in these sets.



6. Algorithms: Decidable problems are associated with algorithms that solve them.
These algorithms can be implemented using various computational models, such as
Turing machines or programming languages.

7. Complexity: The complexity of a decidable problem refers to the resources required,
such as time and space, to solve it. Decidable problems can have varying levels of
complexity, ranging from those that can be solved efficiently to those that require
significant computational resources.

8. Application: Decidable problems find applications in various domains of computer
science, such as formal language theory, compiler design, program analysis,
cryptography, and algorithmic decision-making.

The notion of decidability is central to computability theory and plays a crucial role in
understanding the limits of computation. Decidable problems are considered solvable
within the realm of algorithms, providing a foundation for developing efficient algorithms
and solving practical problems in various fields of computer science.

Connection between decidability and recursive languages
The connection between decidability and recursive languages lies in the fact that a
language is decidable if and only if it is a recursive language. In other words,
decidability and recursiveness are two different ways of characterizing the same class
of languages.

A language is considered decidable if there exists an algorithm or a Turing machine that
can determine whether a given input string belongs to the language or not. This
decision procedure must halt and produce the correct answer for every input string. A
language is decidable if and only if there exists a Turing machine that recognizes it,
meaning the Turing machine halts and accepts every string in the language and halts
and rejects every string not in the language.

On the other hand, a recursive language is a language that can be effectively
recognized by a Turing machine. It means that there exists a Turing machine that halts
and accepts every string in the language and halts and rejects every string not in the
language.

The connection between decidability and recursive languages can be
summarized as follows:



● If a language is decidable, it means that there exists a decision procedure,
algorithm, or Turing machine that can effectively recognize the language. Thus, a
decidable language is recursive.

● Conversely, if a language is recursive, it means that there exists a Turing
machine that effectively recognizes the language. This Turing machine can be
seen as the decision procedure or algorithm for deciding membership in the
language, making the language decidable.

Therefore, decidability and recursiveness are equivalent properties for languages. A
language is decidable if and only if it is a recursive language. This connection allows us
to interchangeably use the terms "decidable language" and "recursive language" to refer
to the same class of languages.

Understanding the connection between decidability and recursive languages is essential
in formal language theory and computability theory. It helps establish the boundaries of
what can be effectively computed and provides a foundation for analyzing the
computational properties of languages. It also guides the development of algorithms
and decision procedures for solving problems within these languages.

Examples of decidable problems and their corresponding recursive
languages
Membership Problem for Regular Languages:
The problem of determining whether a given string belongs to a regular language is
decidable. The corresponding recursive language is the set of all strings that are
accepted by a deterministic finite automaton (DFA) or recognized by a regular
expression. Given a string and a DFA or regular expression, we can algorithmically
determine if the string is in the language defined by the DFA or regular expression.

Membership Problem for Context-Free Languages:
The problem of determining whether a given string belongs to a context-free language is
decidable. The corresponding recursive language is the set of all strings that can be
derived from the start symbol of a given context-free grammar. Given a string and a
context-free grammar, we can algorithmically determine if the string can be generated
by the grammar.

Halting Problem:
The halting problem, which asks whether a given Turing machine halts on a given input,
is undecidable. However, there are specific variations of the halting problem that are



decidable. For example, the problem of determining whether a given Turing machine
halts on a particular input within a specified number of steps is decidable. The
corresponding recursive language consists of all pairs (T, w, n), where T is a Turing
machine, w is an input string, and n is a positive integer representing the maximum
number of steps. The language contains all such pairs for which the Turing machine
halts on the input within n steps.

Emptyness Problem for Context-Free Languages:
The problem of determining whether a given context-free grammar generates any
strings, also known as the emptyness problem, is decidable. The corresponding
recursive language consists of all context-free grammars that generate at least one
string. Given a context-free grammar, we can algorithmically determine if it produces
any strings by analyzing the productions and the reachability of non-terminal symbols.

Equivalence Problem for Regular Expressions:
The problem of determining whether two regular expressions define the same language
is decidable. The corresponding recursive language consists of pairs of regular
expressions that define equivalent languages. Given two regular expressions, we can
algorithmically check if they produce the same language by comparing their structural
properties and generating equivalent automata.

These are just a few examples of decidable problems and their corresponding recursive
languages. Decidability is a fundamental property in formal language theory, and there
are many other decidable problems related to regular languages, context-free
languages, and other classes of languages.

The Arithmetical Hierarchy
The Arithmetical Hierarchy is a concept in computability theory and mathematical logic
that classifies formulas and sets based on their complexity within the realm of
arithmetic. It provides a hierarchy of increasing computational power, with each level
representing a higher degree of complexity.

The Arithmetical Hierarchy is defined using formulas in the language of first-order
arithmetic, which includes logical symbols, quantifiers (∀, ∃), arithmetic operations
(addition, multiplication), and relation symbols (≤, =). The formulas are built from atomic
formulas involving arithmetic expressions and variables.



The levels of the Arithmetical Hierarchy are denoted by Σ⁰₀, Π⁰₀, Σ⁰₁, Π⁰₁, Σ⁰₂, Π⁰₂, and so
on, where the superscript represents the quantifier alternation and the subscript

represents the number of unbounded
quantifiers. The levels alternate between
existential (∃) and universal (∀) quantifiers.

At the lowest level, Σ⁰₀, are the computable
sets, also known as decidable or recursive sets.
These are sets of natural numbers that can be
effectively decided by a Turing machine. The
formulas at this level involve only bounded
quantifiers (∀n, ∃n) and can express
properties that can be verified algorithmically.

Moving up the hierarchy, the Σ⁰₁ level
represents recursively enumerable sets, also
known as semi-decidable sets. These are sets
of natural numbers for which there exists a
Turing machine that halts and accepts any
input belonging to the set, but may run
indefinitely on inputs not in the set. The
formulas at this level allow the use of
unbounded existential quantifiers (∃n),
indicating the existence of an element satisfying
a certain property.

The Π⁰₁ level is the complement of the Σ⁰₁ level
and represents co-recursively enumerable sets.
These are sets for which there exists a Turing
machine that halts and rejects any input not
belonging to the set, but may run indefinitely on
inputs in the set. The formulas at this level

involve unbounded universal quantifiers (∀n), indicating that every element satisfies a
certain property.

The hierarchy continues with higher levels Σ⁰₂, Π⁰₂, Σ⁰₃, Π⁰₃, and so on, each
representing an increase in computational power and complexity. These levels capture
more intricate properties and subsets of natural numbers, with formulas involving
additional quantifier alternations and nesting.



The Arithmetical Hierarchy has significant implications in mathematical logic,
computability theory, and complexity theory. It provides a framework for classifying
problems and formulas based on their computational properties. Understanding the
levels of the hierarchy helps analyze the limits of computability and the complexity of
decision procedures. The hierarchy also serves as a foundation for studying more
advanced hierarchies, such as the Analytical Hierarchy and the Projective Hierarchy,
which extend the concept to higher-order logics and set theories.

Recursive languages and their classification within the arithmetical
hierarchy
Recursive languages, also known as decidable languages, are a class of languages
that can be effectively decided by a Turing machine. These languages have a clear-cut
decision procedure that halts and accepts or halts and rejects any input string.

In the context of the Arithmetical Hierarchy, recursive languages correspond to formulas
in the lowest level, Σ⁰₀. These formulas involve only bounded quantifiers (∀n, ∃n) and
can express properties that can be verified algorithmically.

The classification of recursive languages within the Arithmetical Hierarchy is based on
their properties and the complexity of the formulas that describe them. Since recursive
languages have a decision procedure, they can be expressed using formulas that
involve a finite number of quantifiers.

For example, let's consider the language L = {0ⁿ1ⁿ | n ≥ 0}, which consists of strings of
0s followed by an equal number of 1s. This language is a recursive language because
there exists an algorithmic procedure to determine whether a given input string belongs
to L.

The language L can be represented by a formula in the language of first-order
arithmetic. The formula would involve a bounded quantifier (∀n) to specify that the
number of 0s and 1s should be the same. The formula would also involve arithmetic
operations and relation symbols to define the constraints on the string.

The formula that represents the language L is at the Σ⁰₀ level of the Arithmetical
Hierarchy. It expresses a property that can be effectively checked using a Turing
machine or an algorithm.

In summary, recursive languages, being decidable by nature, are classified within the
lowest level (Σ⁰₀) of the Arithmetical Hierarchy. The formulas representing these



languages involve bounded quantifiers and express properties that can be
algorithmically verified. Understanding the classification of recursive languages within
the Arithmetical Hierarchy helps analyze their complexity and relationship to other
classes of languages.

Relationship between the arithmetical hierarchy and complexity
classes
The Arithmetical Hierarchy provides a framework for classifying formulas and sets
based on their complexity within arithmetic. While the Arithmetical Hierarchy is primarily
concerned with logical and set-theoretic properties, there is a connection between the
hierarchy and complexity classes in computational complexity theory.

Complexity classes, such as P (polynomial time) and NP (nondeterministic polynomial
time), capture the computational complexity of problems and sets of decision problems.
These complexity classes focus on the efficiency of algorithms and the resources
required to solve problems.

The relationship between the Arithmetical Hierarchy and complexity classes can be
seen through the notion of relativization. Relativization is a technique that examines the
behavior of computational models, such as Turing machines, with respect to
oracles—additional sources of information or decision-making power.

For example, the concept of the arithmetical hierarchy can be relativized to obtain
complexity classes like P^NP and NP^NP. Here, the superscript denotes the oracle
used in the computation. The classes P^NP and NP^NP capture the complexity of
problems when additional decision-making power is available in the form of an NP
oracle.

Additionally, the polynomial hierarchy (PH) is another hierarchy closely related to the
Arithmetical Hierarchy. The polynomial hierarchy extends the concept of the Arithmetical
Hierarchy by incorporating quantifiers beyond the first-order logic used in the
Arithmetical Hierarchy. The polynomial hierarchy includes levels such as Σ₂, Π₂, Σ₃, Π₃,
and so on, each representing an increase in computational power and complexity.

The classes within the polynomial hierarchy, such as NP, co-NP, PSPACE (polynomial
space), and EXPTIME (exponential time), are associated with different levels of the
polynomial hierarchy. These classes capture different levels of computational complexity
and represent increasingly difficult computational problems.



While the Arithmetical Hierarchy and complexity classes address different aspects of
computation—logical properties versus algorithmic complexity—they are connected
through the concepts of relativization and the polynomial hierarchy. This connection
allows for a deeper understanding of the interplay between logical complexity and
computational complexity and helps analyze the complexity of decision problems from
both perspectives.


