
Lesson 7: Interpolation, Approximation, and Curve
Fitting
Interpolation, approximation, and curve fitting are fundamental concepts in mathematics
and data analysis that play a crucial role in various fields. These techniques allow us to
estimate, approximate, and model functions or data points, providing valuable insights
and facilitating decision-making processes.

Interpolation involves estimating values between known data points. It enables us to fill
in the gaps and obtain continuous estimates. Interpolation is particularly useful when we
have limited data points but want to estimate values at intermediate positions. It helps
us understand the behavior of a function or phenomenon between the observed data
points. Common interpolation methods include linear interpolation, polynomial
interpolation (such as Lagrange polynomials), and spline interpolation.

Approximation techniques are used when an exact solution may be difficult or
unnecessary. Approximation involves finding a simpler function or model that closely
represents a more complex or unknown function. It allows us to simplify computations,
make predictions, and gain insights. Numerical approximation methods, such as
numerical integration and numerical solutions to differential equations, provide valuable
tools for estimating values and solving problems efficiently.

Curve fitting aims to find a mathematical model or function that best fits a given set of
data points. It involves adjusting the parameters of the model to minimize the difference
between the predicted values and the observed data. Curve fitting is widely used in
scientific research, engineering, economics, and other fields to analyze data, identify
trends, and make predictions. The least squares approximation method is commonly
employed to find the best-fit curve, optimizing the overall fit to the data.

Polynomial Interpolation
Polynomial interpolation is a powerful technique in numerical analysis that allows us to
construct a polynomial function that accurately represents a given set of data points.
Interpolation is essential in various fields, such as mathematics, engineering, computer
graphics, and data analysis, as it enables us to estimate intermediate values between
data points and understand the behavior of a function.



Lagrange polynomials, named after Joseph-Louis Lagrange, are a popular approach for
polynomial interpolation. They are designed to pass through a specified set of data
points. For a set of n+1 distinct data points (x₀, y₀), (x₁, y₁), ..., (xₙ, yₙ), the Lagrange
polynomial of degree n is a unique polynomial that satisfies the interpolation conditions.

The key idea behind Lagrange polynomials is to construct individual polynomials for
each data point, ensuring that each polynomial evaluates to 1 at its corresponding
x-value and 0 at all other data points. These polynomials form a basis for the space of
polynomials of degree n, guaranteeing the uniqueness of the resulting polynomial.

To perform polynomial interpolation using Lagrange polynomials, we follow these
steps:

1. Given a set of data points (x₀, y₀), (x₁, y₁), ..., (xₙ, yₙ), with distinct x-values, we
aim to find a polynomial function P(x) that passes through these points.

2. For each data point (xᵢ, yᵢ), we construct the corresponding Lagrange polynomial
Lᵢ(x). The Lagrange polynomial is defined as the product of linear terms, where
each term consists of (x - xⱼ) divided by (xᵢ - xⱼ), where j ranges from 0 to n and
j ≠ i.

3. We construct the interpolated polynomial P(x) by summing up the Lagrange
polynomials multiplied by their corresponding y-values. This results in the
polynomial equation:

P(x) = y₀ * L₀(x) + y₁ * L₁(x) + ... + yₙ * Lₙ(x)

The resulting polynomial P(x) is unique and of degree n, ensuring that it passes
through all the given data points.

Polynomial interpolation using Lagrange polynomials provides a flexible and accurate
method for approximating a function based on a set of discrete data points. By
constructing a polynomial that passes through the data, we can estimate the function's
values at intermediate points within the given interval. However, it is important to note
that the accuracy of the interpolation heavily depends on the distribution and density of
the data points, as well as the behavior of the underlying function. Irregularly spaced or
clustered data points may lead to oscillations or inaccuracies in the interpolated
polynomial. Additionally, as the degree of the polynomial increases, there is a potential



for overfitting and loss of accuracy. Careful consideration of the data and the degree of
the polynomial is essential for obtaining reliable and meaningful results.

Numerical Approximation using Splines
Numerical approximation using splines is a popular technique in numerical analysis that
allows for the efficient and accurate estimation of functions based on discrete data
points. Splines are piecewise-defined polynomials that are smoothly connected at
certain points called knots. They play a crucial role in approximation tasks by providing
a flexible framework to model complex functions and interpolate between data points.

One widely used type of spline interpolation is cubic spline interpolation. Cubic splines
are piecewise cubic polynomials defined on intervals between knots. They ensure
continuity of the function, its first derivative, and second derivative at the knots. This
smoothness property makes cubic splines ideal for numerical approximation tasks,
especially when the underlying function exhibits complex behavior.

The process of using cubic splines for numerical approximation involves the
following steps:

1. Given a set of data points (x₀, y₀), (x₁, y₁), ..., (xₙ, yₙ), with x₀ < x₁ < ... < xₙ,
we aim to construct a piecewise cubic polynomial that accurately represents the
data.

2. First, we determine the intervals between the data points. These intervals, also
known as subintervals, are defined by the knots x₀, x₁, ..., xₙ. Within each
subinterval [xᵢ, xᵢ₊₁], a cubic polynomial is defined to approximate the function.

3. To ensure continuity, we impose interpolation conditions at each data point.
This involves specifying that the interpolated function must pass through the
given data points. This requirement guarantees that the spline interpolates the
data accurately.

4. Additionally, we impose smoothness conditions by ensuring continuity of the
first and second derivatives at the knots. This smoothness property makes the
spline function more stable and provides a better approximation of the underlying
function.



5. To determine the coefficients of the cubic polynomials within each subinterval,
we solve a system of equations. These equations arise from the interpolation and
smoothness conditions imposed on the cubic splines. The resulting system can
be solved efficiently using various numerical methods, such as matrix
factorization techniques.

6. Once the coefficients are obtained, the cubic spline function is constructed by
combining the cubic polynomials within each subinterval. This piecewise-defined
function represents the numerical approximation of the original function based on
the given data points.

Numerical approximation using cubic splines offers several advantages. The resulting
spline function captures the overall shape and behavior of the original function
accurately. The smoothness property ensures a visually pleasing and continuous
representation. Additionally, cubic splines provide local control over the approximation,
allowing for adaptive modeling of complex functions with varying characteristics.
Moreover, cubic spline interpolation is computationally efficient and numerically stable,
making it suitable for large-scale approximation tasks.

Numerical approximation using splines, particularly cubic splines, is a powerful
technique for accurately estimating functions based on discrete data points. Cubic
splines offer continuity and smoothness, ensuring a visually pleasing and stable
approximation. By utilizing piecewise cubic polynomials and imposing interpolation and
smoothness conditions, cubic splines provide flexible and accurate numerical
approximations.

Curve Fitting and Least Squares Approximation
Curve fitting is a fundamental technique in data analysis and modeling that aims to find
a mathematical function that closely matches a given set of data points. It involves
selecting a suitable function form and determining the optimal parameters that minimize
the difference between the function and the data. Curve fitting plays a crucial role in
various fields, including statistics, engineering, economics, and physics, where it is used
for data analysis, prediction, and understanding underlying relationships.

Least squares approximation is a commonly used method for curve fitting. It provides a
robust and efficient approach to finding the best-fit curve by minimizing the sum of
squared differences between the observed data points and the values predicted by the



model. The goal is to find the parameters of the chosen function that minimize the
overall error between the function and the data.

The process of using least squares approximation for curve fitting involves the
following steps:

1. Choose a function form that represents the type of relationship between the
independent variable (x) and the dependent variable (y). The choice of the
function depends on the nature of the data and the underlying phenomenon
being modeled. Common function forms include linear, polynomial, exponential,
logarithmic, and trigonometric functions.

2. Define the objective function, which represents the error between the function
and the observed data points. The objective function is typically the sum of
squared differences between the predicted values and the actual data points.

3. Minimize the objective function by adjusting the parameters of the chosen
function. This is typically done using optimization techniques, such as the method
of least squares. The optimization process seeks to find the optimal values for
the parameters that minimize the overall error.

4. Assess the goodness of fit by evaluating statistical measures such as the
coefficient of determination (R²), which indicates the proportion of the variation in
the data that is explained by the fitted curve. Other measures, such as the root
mean square error (RMSE), can provide additional insights into the quality of the
fit.

Least squares approximation is particularly useful for curve fitting because it provides a
systematic way to find the best-fit curve that minimizes the overall error. It takes into
account all data points and assigns more weight to points with larger residuals,
effectively reducing the influence of outliers. This robustness makes least squares
approximation suitable for noisy or imperfect data.

Additionally, least squares approximation allows for the incorporation of complex models
with multiple parameters, enabling the fitting of curves with intricate shapes and
patterns. The method is also computationally efficient, allowing for the efficient
estimation of parameters even for large datasets.

In summary, curve fitting is a powerful technique for finding the best-fit curve that closely
matches a set of data points. Least squares approximation is a widely used method for



curve fitting that minimizes the sum of squared differences between the observed data
and the predicted values. By selecting a suitable function form and optimizing the
parameters, least squares approximation provides an efficient and robust approach to
curve fitting. It is widely applicable across various fields and provides valuable insights
into the relationships between variables and the underlying trends in the data.

Comparison and Practical Considerations
When considering the choice between polynomial interpolation, spline interpolation, and
least squares approximation, it is crucial to thoroughly compare their characteristics,
advantages, limitations, and practical considerations in order to determine the most
suitable method for a given problem.

Polynomial interpolation involves constructing a polynomial function that precisely
passes through the given data points. It is a straightforward and computationally
efficient method. One of its key advantages is that it provides an exact fit to the data
points, ensuring that the interpolating polynomial passes through each point accurately.
Additionally, polynomial interpolation is relatively simple to implement and does not
require complex computations. However, high-degree polynomials can introduce
oscillations or inaccuracies, especially when dealing with widely spaced data points,
known as Runge's phenomenon. The accuracy of polynomial interpolation heavily
depends on the distribution and density of the data points. Therefore, it is important to
exercise caution when using high-degree polynomials to avoid potential issues.

Spline interpolation, on the other hand, involves constructing piecewise-defined
polynomials that maintain continuity and smoothness. It provides a visually pleasing and
continuous representation of the data. Spline interpolation excels in handling complex
functions and irregularly spaced data points more effectively than polynomial
interpolation. Its advantages lie in capturing the overall shape and trends in the data,
offering a visually appealing representation. However, spline interpolation requires
additional computational effort and memory compared to polynomial interpolation.
Extrapolation beyond the range of the data points can also pose challenges. Therefore,
when using spline interpolation, it is crucial to consider continuity and smoothness
requirements, making it particularly useful for functions with intricate shapes, rapid
changes, or irregularities. Care should also be exercised when extrapolating beyond the
range of the given data points.



Least squares approximation is a flexible and robust method for curve fitting and data
modeling. It involves minimizing the sum of squared differences between the data and
the model. Least squares approximation offers advantages in terms of flexibility and
robustness, making it suitable for handling noisy or imperfect data. It allows for the use
of complex models and effectively handles outliers. However, it requires a suitable
choice of the function form and model parameters to ensure a good fit. Unlike
polynomial interpolation, least squares approximation may not provide an exact fit to the
data points but instead aims to minimize the overall error. It is commonly used for curve
fitting, trend analysis, and modeling real-world phenomena. Least squares
approximation is particularly valuable when dealing with noisy data or situations where
outliers may affect the accuracy of other methods. When employing least squares
approximation, it is important to carefully select the appropriate function form and strike
a balance between model complexity and simplicity.

Practical considerations for choosing the appropriate method include accuracy
requirements, data characteristics, and computational efficiency. Accuracy requirements
involve considering the desired level of accuracy and the behavior of the underlying
function. Polynomial interpolation may be suitable when an exact fit is required, while
spline interpolation and least squares approximation provide smoother representations
that capture the overall trends. Analyzing the distribution, density, and noise level of the
data points is crucial in assessing data characteristics. Spline interpolation and least
squares approximation are generally more robust to noisy or irregularly spaced data.
Computational efficiency is another practical consideration, where polynomial
interpolation is the simplest and most efficient method. Spline interpolation and least
squares approximation involve additional computations, but their benefits may outweigh
the computational cost, especially for complex functions or large datasets.

In summary, the choice between polynomial interpolation, spline interpolation, and least
squares approximation depends on various factors, including the desired level of
accuracy, data characteristics, and computational efficiency. Each method has its own
advantages and limitations. Polynomial interpolation provides an exact fit, spline
interpolation offers smoothness and continuity, and least squares approximation
handles noisy data and allows for complex models. By considering their characteristics
and practical considerations, one can select the most appropriate method for accurate
and reliable numerical approximation.


