
Lesson 6: Regression algorithms
Regression algorithms are a fundamental component of machine learning that focus on
predicting continuous values based on input features. These algorithms are widely used
in various fields, including finance, economics, healthcare, and engineering, where
understanding and forecasting continuous outcomes are crucial.

The primary goal of regression algorithms is to establish a relationship between the
input features and the target variable, allowing us to make accurate predictions on
unseen data. Unlike classification algorithms that predict discrete classes, regression
algorithms estimate a continuous and often numerical value. This makes regression
particularly useful for tasks such as predicting house prices, stock market trends,
energy consumption, or patient health outcomes.

Regression algorithms leverage statistical techniques and mathematical models to find
patterns and relationships in the training data. By analyzing the relationships between
the input features and the target variable, these algorithms create a regression function
that can be used to estimate the value of the target variable for new instances.

There are various regression algorithms available, each with its strengths and
assumptions. Linear regression is one of the simplest and most commonly used
regression algorithms, assuming a linear relationship between the input features and
the target variable. Other algorithms, such as polynomial regression, support nonlinear
relationships by including higher-order terms in the regression equation.

More advanced regression algorithms include decision tree-based models like random
forests and gradient boosting, which can capture complex nonlinear relationships and
interactions between features. Support Vector Regression (SVR) utilizes support vector
machines to find the best hyperplane that fits the data. Additionally, there are Bayesian
regression models, such as Gaussian Processes, that incorporate prior knowledge and
uncertainty estimation into the regression process.

Choosing the right regression algorithm depends on several factors, including the
nature of the data, the complexity of the relationships, and the desired interpretability of
the model. It is essential to evaluate and compare the performance of different
regression algorithms using metrics like mean squared error (MSE), mean absolute
error (MAE), or R-squared to select the most suitable algorithm for the specific problem.



Linear Regression
Linear regression is a fundamental concept in machine learning and statistics. It is used
to model the relationship between a dependent variable and one or more independent
variables. In this chapter, we will explore the basic concepts of linear regression. Linear
regression is a simple yet powerful tool that can be used in a wide range of machine
learning and statistical applications, making it an essential technique for any data
scientist or machine learning practitioner.

Simple Linear Regression
Simple linear regression is a statistical technique used to model the relationship
between a dependent variable and a single independent variable. The goal of this
technique is to find the best linear relationship between the variables, which can then be
used to make predictions about the dependent variable.

The assumptions of linear regression include that the relationship between the variables
is linear, the errors are normally distributed, and the variance of the errors is constant
across all levels of the independent variable. These assumptions should be checked
before fitting the linear regression model.

To fit a simple linear regression model, we first need to collect data on both the
dependent and independent variables. We then use a method called ordinary least



squares to estimate the coefficients of the linear equation that best fits the data. This
involves minimizing the sum of the squared errors between the predicted values and the
actual values.

Once we have fitted the model, we can interpret the results by examining the
coefficients of the equation. The intercept represents the predicted value of the
dependent variable when the independent variable is zero, while the slope represents
the change in the dependent variable for each one-unit increase in the independent
variable.

Simple linear regression has a wide range of real-world applications, including in
finance, economics, and engineering. For example, it can be used to predict the price of
a house based on its size or to estimate the amount of rainfall based on the
temperature.

EXAMPLE CODE

Here is an example code for implementing simple linear regression in Python using the
LinearRegression class from the sklearn library. This code fits a linear regression

model to sample data with one independent variable x and one dependent variable y. It
retrieves the intercept and slope of the linear equation and makes a prediction for a new

value of x.

import numpy as np

from sklearn.linear_model import LinearRegression

# Sample data

x = np.array([5, 10, 15, 20, 25]).reshape((-1, 1))

y = np.array([10, 20, 30, 40, 50])

# Create a linear regression model and fit the data

model = LinearRegression().fit(x, y)



# Print the coefficients of the linear equation

print('Intercept:', model.intercept_)

print('Slope:', model.coef_[0])

# Predict the value of y for a new value of x

new_x = [[30]]

print('Predicted y for x = 30:', model.predict(new_x))

Multiple Linear Regression
Multiple linear regression is a powerful tool for modeling the relationship between a
dependent variable and multiple independent variables. To use this technique, it is
important to consider the assumptions of multiple linear regression, including linearity,
independence, homoscedasticity, and normality. Violations of these assumptions can
affect the accuracy of the model, so it is important to diagnose and address these
issues.

To fit a multiple linear regression model, we use least squares regression to estimate
the coefficients of the model. The coefficient of determination (R-squared) measures the
proportion of variance in the dependent variable that is explained by the independent
variables in the model. The coefficients can be interpreted to understand the
relationship between each independent variable and the dependent variable and can be
used to make predictions.

Multiple linear regression has a wide range of real-world applications, such as predicting
housing prices based on factors like location, square footage, and number of bedrooms,
or predicting sales based on factors like advertising spend, seasonality, and pricing
strategies. By understanding the concepts and techniques of multiple linear regression,
we can apply this powerful tool to solve problems in various industries.

EXAMPLE CODE



The following Python code example demonstrates how to fit a multiple linear regression
model using the statsmodels library in Python. This example assumes that the data is
stored in a CSV file, and demonstrates how to load the data, define the dependent and

independent variables, and fit the model using the ordinary least squares (OLS)
method. The example also shows how to add a constant column to the independent
variables using the add_constant function, and how to print a summary of the model

using the summary method.

import pandas as pd

import numpy as np

import statsmodels.api as sm

# load data

data = pd.read_csv('data.csv')

# define dependent and independent variables

y = data['sales']

X = data[['TV', 'radio', 'newspaper']]

# add constant column to independent variables

X = sm.add_constant(X)

# fit multiple linear regression model

model = sm.OLS(y, X).fit()

# print model summary

print(model.summary())

Polynomial regression
Polynomial regression is a versatile regression algorithm that extends the concept of
linear regression by incorporating polynomial terms into the regression equation. This
allows us to capture nonlinear relationships between the input features and the target



variable, making it a valuable tool for modeling complex data patterns that linear
regression cannot effectively handle.

In polynomial regression, the regression equation takes the form:

y = b0 + b1 * x + b2 * x^2 + b3 * x^3 + ... + bn * x^n

Here, 'y' represents the target variable, 'x' represents the input feature, and 'b0, b1, b2,
..., bn' are the regression coefficients. The degree of the polynomial, denoted by 'n',
determines the flexibility and complexity of the curve that can be fitted to the data. For
example, a quadratic polynomial (degree 2) introduces a curved relationship, while a
cubic polynomial (degree 3) allows for even more complex nonlinear patterns.

To perform polynomial regression, the original features are transformed into polynomial
terms. For example, if we have a single input feature 'x', a quadratic polynomial
regression would transform the data to include additional features: 'x', 'x^2'. These
polynomial terms expand the feature space, enabling the model to capture more
complex relationships between the input and target variables. Once the polynomial
terms are created, a linear regression algorithm is applied to the transformed dataset to
estimate the regression coefficients.

Polynomial regression is particularly useful when the relationship between the input
features and the target variable exhibits curvature, saturation, or diminishing returns. It
allows us to model phenomena where the effect of an input feature on the target



variable changes nonlinearly with its values. For example, in economics, polynomial
regression can capture diminishing marginal returns or increasing economies of scale.

However, it is important to be cautious when selecting the degree of the polynomial. A
higher degree polynomial can lead to overfitting, where the model captures noise or
irrelevant patterns in the training data, resulting in poor generalization on unseen data.
To mitigate overfitting, regularization techniques can be applied, such as ridge
regression or LASSO, which introduce penalties on the regression coefficients to
prevent excessively complex models.

Choosing the appropriate degree of the polynomial in polynomial regression requires
careful consideration. It is common practice to evaluate the model's performance on a
separate validation dataset or employ cross-validation techniques to select the degree
that balances model complexity and generalization. This ensures that the model
captures the underlying patterns in the data without overfitting or underfitting.

Polynomial regression extends the capabilities of linear regression by accommodating
nonlinear relationships between input features and the target variable. It enables us to
capture more complex data patterns and provides flexibility in modeling various
phenomena. By carefully selecting the degree of the polynomial and applying
regularization techniques, polynomial regression can be a powerful tool for
understanding and predicting nonlinear relationships in data.

Support vector regression (SVR)
Support Vector Regression (SVR) is a regression algorithm that extends the concepts of
Support Vector Machines (SVM) to the task of regression. SVR is a powerful technique
used to predict continuous values by finding a hyperplane that best fits the data while
minimizing the error between the predicted and actual target values.

SVR operates by transforming the input features into a higher-dimensional space using
kernel functions. The transformed data is then used to find a hyperplane that maximizes
the margin between the predicted values and the epsilon-insensitive tube. The
epsilon-insensitive tube defines a range around the predicted values within which errors
are considered tolerable. Data points falling within this tube are considered
well-predicted, while those outside the tube contribute to the error term.



The objective of SVR is to find the hyperplane that minimizes the error while allowing for
deviations within the epsilon-insensitive tube. This can be formulated as the following
optimization problem:

minimize: (1/2) * ||w||^2 + C * Σ ξ_i + Σ ξ_i*
subject to: y_i - f(x_i) ≤ ε + ξ_i*

f(x_i) - y_i ≤ ε + ξ_i
ξ_i, ξ_i* ≥ 0

In the above formulation, ||w|| represents the norm of the weight vector w, C is a
regularization parameter that controls the trade-off between the margin and the error
term, ξ_i and ξ_i* are slack variables that measure the deviation of data points outside
the epsilon-insensitive tube, and ε is the width of the tube.

SVR can handle linear relationships between the input features and the target variable,
but it can also capture nonlinear relationships by using kernel functions. Commonly
used kernel functions include the radial basis function (RBF) kernel and polynomial
kernels. These kernel functions map the data into a higher-dimensional space, enabling
the algorithm to find nonlinear patterns and relationships.

The choice of the kernel function and tuning of hyperparameters, such as C and ε, are
crucial in SVR. The C parameter controls the trade-off between achieving a smaller
error and allowing more instances to fall outside the epsilon-insensitive tube. A smaller
C value allows more deviations from the tube, while a larger C value enforces stricter



adherence to the tube. The ε parameter defines the width of the tube and influences the
tolerance for errors.

One advantage of SVR is its ability to handle high-dimensional feature spaces and
datasets with a large number of input features. It is also robust to outliers since the loss
function is insensitive within the epsilon-insensitive tube. Additionally, SVR provides a
clear and intuitive interpretation, allowing users to understand the importance of support
vectors and their influence on the regression model.

However, there are considerations when using SVR. The choice of the appropriate
kernel function and tuning of hyperparameters can be challenging and may require
careful experimentation. Preprocessing of the data, such as feature scaling, is often
necessary to ensure optimal performance. Training SVR on large datasets can also be
computationally expensive, especially when nonlinear kernel functions are used.

In summary, Support Vector Regression (SVR) is a powerful regression algorithm that
extends the concepts of Support Vector Machines (SVM) to predict continuous values. It
can handle linear and nonlinear relationships between input features and the target
variable using kernel functions. SVR offers robustness, interpretability, and the ability to
handle high-dimensional data. Understanding the hyperparameters, kernel functions,
and optimization problem formulation is crucial for effectively applying SVR to predict
continuous values in various domains.

Ensemble Methods
Ensemble methods are a powerful tool in machine learning, which can increase the
accuracy of predictions by combining multiple models. They are widely used in various
fields, including finance, healthcare, and e-commerce. In this chapter, we will discuss
three popular ensemble methods: bagging, boosting, and random forests.

Bagging (Bootstrap Aggregating) is an ensemble method that involves creating multiple
models on different subsets of the training data and then combining their predictions. It
is particularly useful for unstable models that are sensitive to changes in the data, such
as decision trees. Bagging can improve the performance of a single model by reducing
variance and overfitting.

Boosting, on the other hand, is an ensemble method that focuses on improving the
accuracy of a single model by iteratively training weak models on the residuals of the
previous model. Boosting can reduce bias and improve the performance of a model on



complex tasks. It is commonly used in the context of decision trees, where it is known
as AdaBoost.

Random forests are a type of ensemble method that combine the ideas of bagging and
decision trees. They are made up of multiple decision trees that are trained on different
subsets of the data and feature subsets. Random forests can improve the performance
of decision trees by reducing variance and overfitting. They are widely used in various
applications, such as predicting customer churn and identifying fraudulent transactions.

Bagging
Bagging (bootstrap aggregating) is an ensemble method that combines multiple models
to make better predictions. The basic concept of bagging involves training multiple
models on different subsets of the training data, with replacement. The predictions of
these models are then combined through averaging or voting to make a final prediction.
This approach helps in reducing variance and overfitting, making it an effective
technique for high-variance models such as decision trees.

Bagging can be implemented in practice by first randomly sampling subsets of the
training data with replacement to create multiple subsets of the training data. Then, a
model is trained on each subset of the data, and the predictions of these models are
combined to make a final prediction. This process can be repeated multiple times, with
each iteration resulting in a different set of models being trained on different subsets of
the data.

One of the main advantages of bagging is its ability to reduce the impact of outliers and
noise in the data. By training multiple models on different subsets of the data, bagging
can better capture the underlying patterns and relationships in the data, while avoiding
overfitting. Bagging is particularly useful in scenarios where there is high variance in the
data, and there is a risk of overfitting.

However, one of the main drawbacks of bagging is its increased computational cost.
Training multiple models on different subsets of the data can be time-consuming and
resource-intensive, especially for large datasets. Additionally, the predictions of the
individual models can be less interpretable, as they may not provide clear insights into
the underlying patterns and relationships in the data.

Bagging has a wide range of real-world applications, such as predicting the stock prices
of a company based on historical data, or predicting customer churn in a
telecommunications company. In these applications, bagging can be used to create



multiple models that capture different aspects of the data, resulting in more accurate
and reliable predictions.

Boosting
Boosting is another popular ensemble method that combines multiple weak learners to
create a strong model. The basic idea behind boosting is to sequentially train models
that focus on the data points that previous models have misclassified. By doing so, the
algorithm gradually improves its performance over time.

One of the most common boosting algorithms is AdaBoost (Adaptive Boosting).
AdaBoost assigns a weight to each data point in the training set, and the weights are
adjusted after each iteration to give more importance to misclassified points. In each
iteration, a weak learner is trained on the weighted data, and the algorithm reweights
the data for the next iteration.

Boosting is particularly useful when dealing with complex data sets that have non-linear
relationships. It has been successfully applied in a variety of domains, such as natural
language processing, computer vision, and finance.

One drawback of boosting is that it can be sensitive to noisy data and outliers.
Additionally, because boosting is an iterative process, it can be computationally
expensive and time-consuming to train. Nevertheless, with appropriate tuning and
parameter selection, boosting can be a powerful tool for improving predictive accuracy
in machine learning.


