
Lesson 5: Iterative Methods for Solving Linear
Systems
Iterative methods are a class of algorithms used to solve linear systems of equations.
They are particularly useful when the system is large or sparse, meaning it has a large
number of variables or most of the coefficients are zero. Instead of finding the exact
solution in a single step, iterative methods gradually approach the solution through a
series of approximations.

The general form of a linear system of equations is:

A * x = b

where A is the coefficient matrix, x is the vector of unknowns, and b is the right-hand
side vector. The goal is to find the values of x that satisfy the equation.

Iterative methods start with an initial guess for the solution, denoted as x^(0). Then,
they generate a sequence of approximations x^(1), x^(2), x^(3), ..., which ideally
converges to the exact solution x.

At each iteration, an iterative method updates the current approximation x^(k) to get the
next approximation x^(k+1). The update rule depends on the specific method being
used. One common approach is to use the residual vector r^(k), which represents the
error in the current approximation. The residual is defined as:

r^(k) = b - A * x^(k)

The update rule typically involves manipulating the residual vector in some way to
improve the approximation.

Iterative methods continue iterating until a stopping criterion is met. This criterion can be
based on various factors, such as the number of iterations, the size of the residual, or
the desired accuracy of the solution.

Some well-known iterative methods include the Jacobi method, Gauss-Seidel method,
and successive over-relaxation (SOR) method. These methods differ in how they
update the current approximation and how they utilize information from neighboring



variables. They also have different convergence properties and computational
requirements.

Iterative methods offer several advantages over direct methods for solving linear
systems. They can handle large and sparse systems more efficiently since they only
require matrix-vector multiplications and vector operations at each iteration. Additionally,
they can be stopped early if an approximate solution is acceptable, which can save
computation time.

However, iterative methods are not guaranteed to converge for all linear systems, and
the rate of convergence can vary depending on the characteristics of the system. The
choice of the iterative method and its parameters can significantly impact the
convergence behavior and computational efficiency.

In summary, iterative methods are an important class of algorithms used to solve linear
systems of equations. They provide an iterative approach to finding approximate
solutions and are particularly suitable for large or sparse systems. The choice of method
and its parameters should be carefully considered to ensure convergence and
efficiency.

Jacobi method: principles, algorithm, and convergence
analysis
The Jacobi method is an iterative method used to solve linear systems of equations. It is
named after the German mathematician Carl Gustav Jacobi. The method belongs to the
class of stationary iterative methods, which means that the current approximation is
used to update each component of the solution vector independently.

The Jacobi method is based on the idea of splitting the coefficient matrix A into a
diagonal component D, and the remaining off-diagonal components R:

A = D + R

The diagonal matrix D contains the diagonal elements of A, and R contains all the
off-diagonal elements. By rearranging the linear system, we can express it as:

(D + R) * x = b



D * x = b - R * x

x = D^(-1) * (b - R * x)

The Jacobi method updates each component of the current approximation x^(k)
independently using this equation. It uses the previous iteration's values of x to compute
the new values, so it requires storing the entire solution vector at each iteration.

Algorithm:
The algorithm for the Jacobi method can be summarized as follows:

1. Choose an initial approximation x^(0).
2. For each iteration k:
a. Compute the new approximation x^(k+1) using the equation:
x^(k+1)_i = (b_i - Σ(A_ij * x^(k)_j)) / A_ii, for each i-th component of x.

b. Repeat step 2 until a stopping criterion is met.

Convergence Analysis:
The convergence of the Jacobi method depends on the properties of the coefficient
matrix A. Specifically, it converges if the matrix A is diagonally dominant or symmetric
positive definite.

1. Diagonally Dominant Matrix:
A matrix A is diagonally dominant if the absolute value of each diagonal element is
greater than or equal to the sum of the absolute values of the other elements in the
corresponding row. In mathematical terms:

|A_ii| ≥ Σ(|A_ij|), for all i ≠ j

If A is diagonally dominant, the Jacobi method is guaranteed to converge for any initial
approximation x^(0). The convergence rate, however, can be slow for ill-conditioned
systems.

2. Symmetric Positive Definite Matrix:



A matrix A is symmetric positive definite if it is symmetric and all its eigenvalues are
positive. The Jacobi method converges for such matrices, but the convergence rate can
still be slow.

In practice, the convergence rate of the Jacobi method can be influenced by the
conditioning of the system, the choice of initial approximation, and the spectral
properties of the matrix A. In some cases, the method may exhibit slow convergence or
fail to converge.

To improve the convergence rate of the Jacobi method, variants such as the
Gauss-Seidel method and successive over-relaxation (SOR) method are often used.
These methods modify the update rule to incorporate information from neighboring
variables and can converge faster for certain types of systems.

Convergence analysis of iterative methods like the Jacobi method often involves
studying the spectral properties of the coefficient matrix A, including eigenvalues and
eigenvectors.

Gauss-Seidel method: principles, algorithm, and
convergence analysis
The Gauss-Seidel method is another iterative method used to solve linear systems of
equations. It is an extension of the Jacobi method and also belongs to the class of
stationary iterative methods. The key difference is that the Gauss-Seidel method
updates the components of the solution vector using the most recent values available,
including the updated values from the current iteration.

Similar to the Jacobi method, the Gauss-Seidel method splits the coefficient matrix A
into a lower triangular component L, an upper triangular component U, and a diagonal
component D:

A = L + D + U

The diagonal matrix D contains the diagonal elements of A, the lower triangular matrix L
contains the elements below the diagonal, and the upper triangular matrix U contains
the elements above the diagonal.



The Gauss-Seidel method updates each component of the current approximation x^(k)
using the equation:

x^(k+1)_i = (b_i - Σ(L_ij * x^(k+1)_j) - Σ(U_ij * x^(k)_j)) / A_ii
,for each i-th component of x.

Note that in this method, the updated values x^(k+1) are used immediately in the
calculations for subsequent components. This means that each component is updated
in a "forward sweep" manner, using the most up-to-date values available.

Algorithm:
The algorithm for the Gauss-Seidel method can be summarized as follows:

1. Choose an initial approximation x^(0).
2. For each iteration k:

a. For each i-th component of x:

i. Compute the new approximation x^(k+1)_i using the equation:
x^(k+1)_i = (b_i - Σ(L_ij * x^(k+1)_j) - Σ(U_ij * x^(k)_j)) / A_ii.

ii. Update the i-th component of x^(k+1).

b. Repeat step 2 until a stopping criterion is met.

Convergence Analysis:
The convergence of the Gauss-Seidel method also depends on the properties of the
coefficient matrix A. In general, it has similar convergence properties to the Jacobi
method, but it often converges faster due to its use of updated values within each
iteration.

1. Diagonally Dominant Matrix:
If the matrix A is diagonally dominant, the Gauss-Seidel method is guaranteed to
converge for any initial approximation x^(0). In fact, it often converges faster than the
Jacobi method for such matrices.

2. Symmetric Positive Definite Matrix:



For symmetric positive definite matrices, the Gauss-Seidel method also converges, but
the convergence rate can still be slow.

The convergence analysis of the Gauss-Seidel method involves studying the spectral
properties of the coefficient matrix A, similar to the Jacobi method. Conditions such as
diagonal dominance, symmetry, and positive definiteness play a role in determining the
convergence behavior.

The Gauss-Seidel method can be more efficient than the Jacobi method for certain
types of systems, as it incorporates the most up-to-date information in each iteration.
However, it may still suffer from slow convergence or non-convergence for
ill-conditioned or highly non-diagonally dominant systems.

To further improve the convergence rate, methods such as the successive
over-relaxation (SOR) method can be applied. The SOR method introduces a relaxation
factor that accelerates the convergence by over-relaxing the update step.

Comparison of iterative methods
When comparing iterative methods for solving linear systems, several factors come into
play, including efficiency, convergence rate, and convergence criteria. Let's discuss
each of these aspects:

1. Efficiency:
Efficiency refers to the computational cost required to obtain a solution using an iterative
method. Iterative methods have advantages in terms of memory requirements and the
ability to handle large or sparse systems. However, the efficiency of an iterative method
depends on various factors, such as the properties of the system (e.g., size, sparsity,
condition number), the convergence behavior, and the specific implementation. In
general, the efficiency of iterative methods can vary depending on the problem at hand,
and it may be necessary to consider the trade-off between computational cost and
accuracy.

2. Convergence Rate:
The convergence rate of an iterative method refers to how quickly it converges to the
solution. A faster convergence rate means that fewer iterations are required to reach a
desired level of accuracy. The convergence rate depends on the properties of the
coefficient matrix and the specific method being used. In general, iterative methods with



better convergence rates are preferred since they require fewer iterations and therefore
fewer computations. The convergence rate can be influenced by the conditioning of the
system, the choice of initial approximation, the spectral properties of the matrix, and any
acceleration techniques applied (e.g., SOR method). It is important to note that the
convergence rate is not the only factor to consider, as computational cost and stability
also play a role.

3. Convergence Criteria:
Convergence criteria are conditions used to determine when to stop the iteration
process. The choice of convergence criteria depends on the desired level of accuracy
and the properties of the problem. Common convergence criteria include:

a. Residual Norm: The norm of the residual vector (b - A * x) is compared to a
predefined tolerance value. If the norm falls below the tolerance, the iteration process is
considered to have converged.
b. Solution Difference: The difference between consecutive iterations is computed,

and if it falls below a certain threshold, convergence is achieved.
c. Maximum Iterations: A maximum number of iterations is set, and if the solution has

not converged within that limit, the iteration process is terminated.
d. A combination of the above criteria.

The choice of convergence criteria depends on the problem requirements, the desired
accuracy, and the behavior of the iterative method. It is important to balance the
convergence criteria to ensure the desired accuracy is achieved without unnecessary
iterations.

In summary, the efficiency, convergence rate, and convergence criteria are important
considerations when comparing iterative methods. The choice of method depends on
the characteristics of the problem, the properties of the coefficient matrix, the desired
accuracy, and the computational resources available. It is often beneficial to experiment
with different methods and tune their parameters to find the most suitable approach for
a specific linear system.



Practical considerations and applications of iterative
methods in solving linear systems
Iterative methods for solving linear systems have several practical considerations and
find applications in various fields. Let's explore some of these considerations and
applications:

1. Large and Sparse Systems:
Iterative methods are particularly well-suited for large and sparse linear systems, where
the coefficient matrix has many zero elements. Direct methods like Gaussian elimination
become computationally expensive for such systems due to the need to perform
operations on the entire matrix. In contrast, iterative methods only require matrix-vector
multiplications and vector operations, making them more efficient for large and sparse
systems.

2. Memory Requirements:
Iterative methods have low memory requirements compared to direct methods. They
typically store only the current approximation vector, making them suitable for problems
with limited memory resources or when working with extremely large systems.

3. Parallelization:
Iterative methods can be easily parallelized, which makes them suitable for
implementation on parallel computing architectures, such as multi-core processors or
distributed systems. By distributing the computation across multiple processors, the
solution can be obtained faster.

4. Preconditioning:
Preconditioning is a technique used to improve the convergence of iterative methods by
transforming the original system into an equivalent system with better conditioning
properties. Preconditioning can significantly speed up the convergence of iterative
methods, making them more efficient. Various preconditioning techniques exist, such as
incomplete factorization, diagonal scaling, or algebraic multigrid methods.

5. Applications:
Iterative methods find applications in numerous fields, including:

a. Engineering: Finite element analysis, computational fluid dynamics, structural
mechanics, and electromagnetic simulations often involve solving large systems of
linear equations. Iterative methods are commonly used in these areas due to their
efficiency and suitability for sparse systems.



b. Optimization: Many optimization problems involve solving linear systems, such as
in linear programming and constrained optimization. Iterative methods can be employed
to solve these systems iteratively within the optimization algorithms.

c. Image Processing and Computer Vision: Problems such as image reconstruction,
image denoising, and image segmentation often involve solving large linear systems.
Iterative methods are used to efficiently solve these systems and handle the large
datasets.

d. Computational Biology: Various computational biology problems, including
sequence alignment, protein folding, and genome analysis, require solving linear
systems. Iterative methods provide efficient solutions for these problems, allowing
researchers to handle large biological datasets.

e. Financial Modeling: In financial mathematics, iterative methods are used in option
pricing, portfolio optimization, risk assessment, and other financial modeling tasks that
involve solving large linear systems.

Overall, iterative methods offer practical solutions for solving linear systems in a wide
range of applications. Their efficiency, low memory requirements, parallelizability, and
ability to handle large and sparse systems make them valuable tools in scientific
research, engineering, optimization, and various other domains.


