
Lesson 5: Decidability and Undecidability
Decidability and undecidability are fundamental concepts in computer science and
mathematics that explore the limits of computation and the boundaries of what can be
algorithmically determined. These concepts have profound implications for our
understanding of computation and play a crucial role in various fields of study.

Decidability refers to the property of a problem or language that can be solved by an
algorithm or computational procedure. It implies the existence of an effective method
that, given any input, will always halt and provide the correct answer. A decidable
problem can be solved systematically and reliably using an algorithm, which guarantees
a definitive answer for any instance of the problem.

For example, determining whether a number is prime is a decidable problem. There
exists an algorithm, such as the Sieve of Eratosthenes, that can determine whether a
given number is prime by systematically checking its divisibility with other numbers. The
algorithm will always terminate and provide the correct answer.

On the other hand, undecidability refers to the property of a problem or language for
which no algorithm can provide a definitive answer in all cases. An undecidable problem
lacks a general algorithmic solution that can determine membership or non-membership
in the language for every possible instance of the problem. It means that there are
instances of the problem for which no algorithm can produce a correct answer within a
finite amount of time.

One of the most famous examples of an undecidable problem is the Halting Problem,
which asks whether a given program will eventually halt or run indefinitely. Alan Turing's
groundbreaking work proved the undecidability of the Halting Problem, demonstrating
that there exists no algorithm that can determine whether an arbitrary program halts on
all possible inputs.

The concept of decidability and undecidability is closely tied to the pioneering work of
Alan Turing and his theoretical exploration of the limits of computation. Turing's proof of
the undecidability of the Halting Problem highlighted the existence of inherent limitations
to what can be algorithmically solved and computed.

The study of decidability and undecidability forms a significant part of the theory of
computation and has far-reaching applications. It plays a crucial role in programming
language design, where the decidability of various language features and constructs is



essential for language specification and compiler design. Decidability and undecidability
are also relevant in formal verification, where the ability to algorithmically determine the
correctness of systems or programs is a crucial consideration.

Furthermore, the concepts of decidability and undecidability are foundational to
complexity theory and algorithmic analysis. They provide insights into the inherent
computational difficulty of problems and enable the classification of problems based on
their complexity classes, such as P, NP, and beyond. The existence of undecidable
problems serves as a reminder that there are fundamental limits to what can be
computed and solved algorithmically.

Decidable problems can be solved by algorithms, providing definitive answers for any
instance of the problem. Undecidable problems lack a general algorithmic solution,
representing barriers to the existence of a systematic computational procedure. The
study of decidability and undecidability has profound implications for various fields of
study, including programming language design, formal verification, complexity theory,
and algorithmic analysis. It sheds light on the inherent limitations of computation and
offers insights into the boundaries of what can be algorithmically determined.

Decidable and undecidable languages
Decidable and undecidable languages are fundamental concepts in the theory of
computation, shedding light on the limits of computation and the boundaries of what can
be algorithmically determined. Understanding these concepts is crucial for exploring the
intricacies of formal languages and their computability.

A decidable language is a set of strings for which there exists an algorithm or a Turing
machine that can determine, with certainty, whether a given string belongs to the
language. In other words, decidable languages have a systematic and effective
computational procedure that can always provide a definitive answer. These languages
are also referred to as recursive languages because they can be recognized by a Turing
machine that always halts on any input.

For example, consider the language of all even-length strings over the alphabet {0, 1}.
This language is decidable because an algorithm or a Turing machine can count the
number of symbols in the input string and determine whether it is even or odd. By
employing a straightforward arithmetic operation, the algorithm can provide a definitive
answer in a finite amount of time.



In contrast, an undecidable language is a set of strings for which there is no algorithm or
Turing machine that can always determine whether a given string belongs to the
language. These languages lack a general computational procedure that can provide a
definitive answer for every instance. They are also known as recursively enumerable
languages or semidecidable languages.

The Halting Problem serves as the most well-known example of an undecidable
language. It consists of all pairs (M, w), where M represents a Turing machine and w
represents an input string. The question is whether the Turing machine M halts when
given w as input. Alan Turing's groundbreaking work demonstrated that there is no

algorithm that can
solve the Halting
Problem for all
possible inputs. It
highlighted the
existence of
problems that are
inherently
undecidable.

Undecidable
languages have
profound
implications as they
reveal the existence
of computational
problems that lack a

general algorithmic solution. These problems cannot be decided or computed in all
cases, regardless of the available computational resources. They represent
fundamental limits to what can be effectively computed or decided.

It's worth noting that there exist languages that are neither decidable nor undecidable.
These languages are referred to as semidecidable or partially decidable languages. A
semidecidable language has a Turing machine that can recognize the strings belonging
to the language. However, there may not exist a Turing machine that can always reject
strings not in the language. Semidecidable languages exhibit a form of incompleteness
in terms of their decidability.



In summary, decidable languages can be determined algorithmically, while undecidable
languages lack a general algorithmic solution. Understanding the nature of decidable
and undecidable languages is crucial for comprehending the boundaries and limitations
of computation. These concepts provide insights into the complexities of formal
languages and their computability, enabling researchers to explore the capabilities and
constraints of computational systems.

The halting problem and its proof of undecidability
The halting problem is a classic example of an undecidable problem in the field of
computer science and mathematics. It asks whether, given a description of a program
and its input, it is possible to determine whether the program will eventually halt
(terminate) or run indefinitely. In other words, the halting problem seeks to find a general
algorithm that can predict the halting behavior of any program.

The undecidability of the halting problem was proven by Alan Turing in 1936, and it
stands as a milestone in the theory of computation. Turing's proof utilizes a technique
known as diagonalization, which shows that no algorithm can solve the halting problem
for all possible inputs.

Turing's proof begins by assuming, for the sake of contradiction, that there exists a
Turing machine H that can solve the halting problem. This machine takes as input the
description of another Turing machine M and an input string w and halts if and only if M
halts on input w. The aim is to show that such a machine H cannot exist.



To prove this, Turing constructs a new Turing machine D, called the diagonalizing
machine. Machine D takes as input the description of a Turing machine M and simulates
its behavior, but with a twist. It modifies the behavior of M on the input w by flipping it: if
M halts on w, D goes into an infinite loop, and if M runs indefinitely on w, D halts.
Essentially, D always does the opposite of what M would do.

Next, Turing feeds the description of D as input to H, which is assumed to be a halting
oracle. Now comes the crucial step. Turing examines the behavior of H on input D,
specifically looking at whether H halts when given D as input. If H halts, Turing ensures
that D behaves differently from what H predicts, leading to a contradiction. On the other
hand, if H does not halt, Turing ensures that D behaves in accordance with H's
prediction, again leading to a contradiction.

The contradiction arises because the behavior of D contradicts the output of the
assumed halting oracle H. This contradiction shows that H cannot exist, and therefore,
the halting problem is undecidable. No algorithm or Turing machine can determine, for
all possible programs and inputs, whether a program will halt or run indefinitely.

Turing's proof of the undecidability of the halting problem has profound implications in
computer science and the theory of computation. It demonstrates that there are intrinsic
limitations to what can be computed algorithmically. The undecidability of the halting
problem highlights the existence of problems that are beyond the reach of any general
computational procedure, no matter how sophisticated or powerful the computing
system may be.

The significance of the halting problem extends to various areas of computer science,
including programming language design, formal verification, and complexity theory. It
serves as a foundational result that shapes our understanding of the boundaries of
computation and the limits of what can be algorithmically determined.

Implications of the Halting Problem
Turing's proof of the undecidability of the halting problem laid the groundwork for
exploring the limits of computation and establishing the boundaries of what can be
algorithmically determined. The implications of this result extend to various areas within
computer science and beyond:

1. Programming Language Design: The undecidability of the halting problem has
direct implications for programming language design and compiler construction. It
highlights the challenges in creating languages that guarantee termination for all



programs or provide strong guarantees about program behavior. Language features
such as static analysis, type systems, and runtime checks are employed to mitigate the
risk of non-termination, but complete solutions are elusive due to the undecidability of
the halting problem.

2. Formal Verification: The undecidability of the halting problem has significant
implications for formal verification techniques, which aim to prove the correctness of
computer systems or software. Verifying whether a program halts on all inputs is an
essential aspect of program correctness. The undecidability of the halting problem
implies that there can be no general algorithm to verify termination for arbitrary
programs.

3. Complexity Theory: The halting problem serves as a cornerstone in complexity
theory, which deals with the classification of problems based on their computational
resources and difficulty. Undecidable problems, such as the halting problem, are used to
establish lower bounds on the complexity of certain classes of problems. The
undecidability of the halting problem sheds light on the inherent limitations of
computation and the existence of "hard" problems that cannot be efficiently solved by
any algorithm.

4. Computability Theory: The undecidability of the halting problem is a fundamental
result in computability theory, which investigates the nature and boundaries of what can
be computed. It establishes the existence of problems that are not solvable by any
algorithm, highlighting the inherent limitations of computation. The proof of the halting
problem is a pivotal contribution to the field and serves as a starting point for exploring
the properties of undecidable problems and their relationships to other computational
models.

5. Philosophy of Computation: The undecidability of the halting problem raises
philosophical questions about the nature of computation and the limits of what can be
algorithmically determined. It challenges the idea of a "computable function" and raises
profound questions about the nature of information processing and the boundaries of
human knowledge.

Turing's proof of the undecidability of the halting problem has far-reaching implications
in computer science and mathematics. It demonstrates the existence of problems that
are beyond the reach of any general algorithmic solution. The undecidability of the
halting problem shapes our understanding of the limits of computation, influences
programming language design and formal verification techniques, and forms a
foundational result in complexity theory and computability theory. It stands as a



testament to the profound nature of computation and the inherent boundaries of what
can be algorithmically determined.

Reductions and the undecidability of other problems
Reductions are a powerful tool used in the theory of computation to establish the
undecidability of problems by showing their equivalence to other known undecidable
problems. A reduction provides a systematic way to transform instances of one problem
into instances of another problem, such that if the second problem were decidable, then
the first problem would also be decidable. By demonstrating that a known undecidable
problem can be reduced to a new problem, it follows that the new problem is also
undecidable.

The concept of reductions allows us to leverage the undecidability of well-established
problems to prove the undecidability of other problems. This approach is based on the
idea that if we can transform instances of an undecidable problem into instances of a
new problem while preserving the answer, then the new problem must also be
undecidable.

Formally, a reduction from problem A to problem B is a computable function or algorithm
that transforms instances of problem A into instances of problem B in such a way that
the answer to the transformed instance of problem B is the same as the answer to the
original instance of problem A. In other words, if we have a solution for problem B, we
can use it to solve problem A, and vice versa.

The undecidability of the halting problem serves as a foundation for many reductions.
By reducing a problem to the halting problem, we can establish its undecidability. For
example, consider the problem of the Post Correspondence Problem (PCP), which asks
whether there exists a sequence of strings that can be concatenated in different ways to
match two given lists of strings. Alan Turing showed that the halting problem can be
reduced to PCP, demonstrating the undecidability of PCP.

Reductions have been applied to various other problems to establish their
undecidability. Some notable examples include:

The Entscheidungsproblem: Proposed by David Hilbert in the early 20th century, the
Entscheidungsproblem seeks a general algorithm to determine the truth or falsehood of
any mathematical statement. In 1936, Alan Turing showed the undecidability of the



Entscheidungsproblem by reducing it to the halting problem. This reduction
demonstrated that if there were a solution to the Entscheidungsproblem, we could solve
the halting problem, which is known to be undecidable. As a result, the
Entscheidungsproblem was proven to be undecidable as well.

The Post's Correspondence Problem (PCP): The PCP involves finding a sequence of
strings that can be concatenated in different ways to match two given lists of strings.
Emil Post introduced this problem in 1946, and it was subsequently proven to be
undecidable by various reductions. Alan Turing demonstrated the undecidability of PCP
by reducing the halting problem to it. Many other problems, such as the tiling problem
and the satisfiability problem, have also been reduced to PCP to establish their
undecidability.

Gödel's Incompleteness Theorems: Proposed by Kurt Gödel in the 1930s, the
incompleteness theorems show the limitations of formal systems in capturing all truths
of arithmetic. Gödel's first incompleteness theorem proves that any consistent formal
system that is capable of expressing arithmetic is incomplete, meaning that there are
true statements in the system that cannot be proven within the system itself. The proof
of this theorem relies on a self-referential construction called the Gödel numbering or
coding, which is a form of reduction.

The Busy Beaver Problem: The Busy Beaver Problem aims to find the maximum
number of steps that a halting Turing machine with a specific number of states can
perform before halting on a blank tape. It is undecidable, meaning that there is no
algorithm that can determine the maximum number of steps for all possible machines.
The undecidability of the Busy Beaver Problem has been established through
reductions from the halting problem. By showing that a solution to the Busy Beaver
Problem could solve the halting problem, its undecidability is proven.

These are just a few examples of reductions used to prove the undecidability of various
problems. Reductions play a crucial role in identifying undecidable problems and
establishing the limits of computation. They allow us to draw connections between
different problems, demonstrate undecidability, and deepen our understanding of the
boundaries of what can be algorithmically determined.

Reductions are a fundamental technique used to establish the undecidability of
problems by showing their equivalence to known undecidable problems. By
transforming instances of one problem into instances of another problem while
preserving the answer, reductions demonstrate that the new problem is also
undecidable. The undecidability of well-known problems, such as the halting problem,



serves as a foundation for many reductions. This approach enables us to explore the
undecidability of a wide range of problems and gain insights into the inherent limits of
computation.


