
Lesson 3: Context-Free Grammars and Pushdown
Automata

Introduction to context-free grammars (CFG)
Context-Free Grammars (CFG) are an essential concept in computer science and
linguistics for describing the syntax or structure of formal languages. They serve as a
foundation for many areas of study, including programming languages, compilers,
natural language processing, and theoretical linguistics. In this text, we will explore the
fundamentals of CFG and their significance in various domains.

At its core, a context-free grammar is a set of production rules that define how symbols
can be combined to form valid sentences in a language. These rules consist of a
left-hand side (LHS) and a right-hand side (RHS), separated by an arrow (→). The LHS
represents a non-terminal symbol, while the RHS consists of a sequence of terminals
and non-terminals. Terminals are symbols that cannot be further expanded, while
non-terminals can be replaced by a sequence of terminals and non-terminals.

A production rule essentially states that a non-terminal symbol can be replaced by a
particular sequence of symbols. For example, consider a simple CFG for arithmetic
expressions:

1. E → E + E
2. E → E - E
3. E → (E)
4. E → number

In this grammar, the non-terminal symbol E represents an arithmetic expression, and
the terminals are the plus sign (+), minus sign (-), parentheses (()), and numbers. The
production rules define how expressions can be formed. Rule 1 states that an
expression (E) can be replaced by an expression (E) followed by a plus sign (+) and
another expression (E). Similarly, the other rules define alternative ways of constructing
valid expressions.

CFGs are often represented using a notation called Backus-Naur Form (BNF), which
provides a concise and standardized way to describe the production rules. BNF uses
angle brackets (<>) to denote non-terminal symbols and quotes to represent terminals.
For example, the arithmetic expression CFG can be written in BNF as:



<expression> ::= <expression> "+" <expression>
| <expression> "-" <expression>

| "(" <expression> ")"
| <number>

The BNF notation allows for the compact representation of complex grammars, making
it easier to define the syntax of programming languages, define the structure of natural
languages, or even model other formal languages.

One crucial property of context-free grammars is that they exhibit a hierarchical
structure. This property implies that sentences generated from a CFG can be analyzed
recursively, breaking them down into smaller constituents until reaching the terminals.
This hierarchy is useful for parsing algorithms, which can determine the structure of a
sentence based on the given CFG.

In summary, context-free grammars provide a powerful framework for describing the
syntax of formal languages. They are widely used in various fields, from programming
language design to natural language processing. By defining production rules that
govern how symbols can be combined, CFGs enable us to generate and analyze
sentences in a structured and hierarchical manner. Understanding CFGs is fundamental
for anyone interested in language processing, formal language theory, or computational
linguistics.

Derivations and parse trees

Deriviations
A derivation in a CFG provides a formal and systematic way to generate sentences by
applying production rules. It demonstrates the step-by-step transformation of the start
symbol (often denoted as S) into a sentence composed of terminals.

The process of deriving a sentence begins with the start symbol. At each step, a
non-terminal symbol is chosen, and a production rule is applied to replace it with its
corresponding RHS expansion. The choice of the non-terminal symbol can depend on
various factors, such as the desired structure of the generated sentence or specific
parsing algorithms being employed.



The application of production rules continues until all non-terminal symbols have been
replaced, resulting in a fully derived sentence consisting solely of terminals. The
sequence of rule applications defines a unique derivation for a given sentence, allowing
us to trace the path from the initial start symbol to the final sentence.

Derivations are useful for understanding the structure and syntax of a language defined
by a CFG. They provide insights into how different non-terminal symbols are combined
to form valid sentences. By examining the steps of a derivation, one can gain a deeper
understanding of how the language's grammar operates and how sentences are
constructed according to the specified rules.

Derivations also play a significant role in the analysis and processing of sentences.
They form the basis for parsing algorithms, which aim to determine the syntactic
structure of a sentence based on a given CFG. By employing techniques such as
top-down parsing or bottom-up parsing, parsing algorithms utilize derivations to
construct parse trees or identify potential parsing errors.

Understanding derivations in CFGs is essential for various applications in computer
science and linguistics. It enables the design and implementation of programming
languages and compilers, as well as the development of natural language processing
systems. Additionally, derivations serve as a theoretical foundation for formal language
theory, allowing for the classification and comparison of different language classes
based on their grammatical rules and structural properties.

Let's consider a simple CFG as an example:

1. S → aSb
2. S → ε

Here, rule 1 states that the start symbol S can be replaced by the sequence "aSb,"
where "a" and "b" are terminals, and rule 2 indicates that S can be replaced by the
empty string (ε).

To illustrate a derivation, let's derive the sentence "aabbb" using the given CFG:

S (Apply rule 1)
aSb (Apply rule 1)
aaSbb (Apply rule 1)
aabSbbb (Apply rule 2)



aabbb

The derivation above shows the step-by-step process of replacing the non-terminal S
according to the production rules until the final sentence "aabbb" is obtained.

Parse trees
Parse trees, also known as derivation trees or syntax trees, provide a visual
representation of the structure of a sentence derived from a CFG. They illustrate the
hierarchical relationship between the symbols in the sentence and show how the
production rules have been applied.

In a parse tree, each node represents a symbol (either a non-terminal or a terminal),
and the edges represent the application of a production rule. The root of the tree
represents the start symbol, and the leaves correspond to the terminals of the sentence.
The internal nodes represent non-terminals, and their children represent the symbols
obtained by applying a specific production rule.

The construction of a parse tree begins with the start symbol as the root node. Each
subsequent level in the tree represents the expansion of non-terminal symbols into their
corresponding RHS expansions according to the production rules. The children of each
non-terminal node represent the symbols obtained by applying a specific production
rule.

To illustrate the hierarchical relationships and the application of production rules, parse
trees often adhere to certain conventions. For example, the leftmost child of a
non-terminal node corresponds to the leftmost symbol in the RHS of the associated
production rule. This convention helps maintain the order of symbols in the derived
sentence.

Using the same example sentence "aabbb," we can construct a parse tree based on the
given CFG:

S
/ \

a S
/ \

a S
| \
b b



In this parse tree, the root node represents the start symbol S. The leftmost child of the
root node corresponds to the first "a" in the derived sentence, and the rightmost child
corresponds to the second "a." The right child of the second non-terminal S represents
the "b" in the derived sentence. Finally, the leaves of the tree correspond to the
remaining "b" terminals.

Parse trees provide a visual representation of the hierarchical structure of a sentence
derived from a CFG. They clearly illustrate how the production rules are applied at each
step, showing the expansion of non-terminals into terminals. By examining the parse
tree, one can easily understand the syntactic structure of the sentence and trace the
path from the start symbol to the terminals.

Parse trees are particularly useful in parsing algorithms, where they serve as a guide for
analyzing the syntactic validity of a sentence based on the given CFG. They can also
aid in subsequent processing steps, such as semantic analysis or code generation.

In summary, derivations and parse trees are essential concepts in the study of CFGs.
Derivations demonstrate the step-by-step process of replacing non-terminals to derive a
sentence, while parse trees provide a graphical representation of the hierarchical
structure of the sentence. Together, these concepts aid in understanding and analyzing
the syntax of formal languages and are crucial in areas such as parsing, language
processing, and compiler design.

Pushdown automata (PDA) and their relation to CFGs
Pushdown Automata (PDA) and Context-Free Grammars (CFG) are fundamental
concepts in formal language theory and play a vital role in the study of formal languages
and their computational properties. The relationship between PDAs and CFGs goes
beyond their ability to recognize the same class of languages, extending to their
applications in language processing, parsing algorithms, compiler design, and formal
language theory.

A Pushdown Automaton (PDA) is a computational model that extends the capabilities of
finite automata by introducing a stack as an additional memory component. The PDA
consists of a finite control, an input tape, and a stack. It operates by reading symbols
from the input tape, transitioning between states in the finite control based on the
current input symbol and the top symbol of the stack, and performing push, pop, or no



operation on the stack. The stack allows the PDA to store and retrieve symbols,
facilitating the processing of languages with hierarchical structures.

Context-Free Grammars (CFGs), on the other hand, are formal systems used to
describe the syntax or structure of formal languages. A CFG consists of a set of
production rules that define how symbols can be combined to form valid sentences in a
language. The rules consist of a left-hand side (LHS) and a right-hand side (RHS),
separated by an arrow (→). The LHS represents a non-terminal symbol, while the RHS
consists of a sequence of terminals and non-terminals. CFGs provide a powerful
framework for defining and analyzing the structure of formal languages, including
programming languages and natural languages.

The connection between PDAs and CFGs lies in their ability to recognize the same
class of languages, known as context-free languages. A context-free language is
precisely the language generated by a CFG. This connection is established by the
"Chomsky-Schützenberger representation theorem," which states that for any CFG,
there exists an equivalent PDA that can recognize the language generated by that CFG,
and vice versa.

Given a CFG, an equivalent PDA can be constructed that simulates the derivation
process of the CFG. The stack in the PDA corresponds to the derivation in the CFG,
storing the non-terminal symbols encountered during the parsing process. The
transitions in the PDA are defined based on the production rules of the CFG, with the
stack operations reflecting the replacement of non-terminal symbols during the
derivation.

Conversely, given a PDA, it is possible to construct an equivalent CFG. The
non-terminals of the CFG correspond to the states of the PDA, and the production rules
are defined based on the transitions of the PDA. The start symbol of the CFG
corresponds to the initial state of the PDA, and the productions are constructed to mimic
the stack operations of the PDA.

This equivalence between PDAs and CFGs highlights the inherent connection between
the generation and recognition of context-free languages. It demonstrates that the
context-free languages can be recognized by a simple form of automaton with a stack,
which captures the notion of the hierarchical structure exhibited by CFGs.

The relationship between PDAs and CFGs has significant implications in various areas
of computer science. In language processing, PDAs and CFGs are utilized in parsing
algorithms, which analyze the syntactic structure of sentences based on the given CFG.



The equivalence between PDAs and CFGs enables the use of parsing algorithms that
exploit either formalism to determine the structure of a sentence. Parsing algorithms,
such as top-down parsing and bottom-up parsing, utilize the stack-like behavior of PDAs
or the derivation process of CFGs to construct parse trees and determine the validity of
sentences.

In compiler design, the equivalence between PDAs and CFGs is employed in the syntax
analysis phase, where the input program's syntax is checked against the specified
grammar. This phase utilizes techniques such as LL (left-to-right, leftmost derivation) or
LR (left-to-right, rightmost derivation) parsing, which make use of the CFG
representation of the language and leverage the stack-like behavior of PDAs.

Moreover, the relationship between PDAs and CFGs has theoretical implications in
formal language theory. It allows researchers to reason about the properties and
limitations of context-free languages using the formalism of PDAs. Properties such as
closure properties, decidability, and complexity can be studied through the lens of PDAs
and CFGs, providing insights into the computational nature of context-free languages.

In summary, Pushdown Automata (PDAs) and Context-Free Grammars (CFGs) are
intimately connected formal models. They share a close relationship by recognizing the
same class of languages, known as context-free languages. The equivalence between
PDAs and CFGs enables the interchangeability of representations and facilitates their
application in language processing, parsing algorithms, compiler design, and theoretical
studies of formal languages. This relationship forms a foundation for understanding the
structure and computation of context-free languages in various domains of computer
science and formal language theory.


