
Lesson 16: Introduction to Search Algorithms and
Uninformed Search
Search algorithms are a fundamental concept in computer science that encompasses a
wide range of techniques and strategies used to locate specific items or information
within a collection of data. These algorithms are at the core of many applications and
systems, providing efficient means to search through large datasets, explore solution
spaces, and find desired results.

There are various types of search algorithms, each with its own characteristics and
areas of application. Uninformed search algorithms, such as breadth-first search (BFS)
and depth-first search (DFS), explore a search space without considering any additional
information about the problem. They systematically traverse the search space,
evaluating different paths until the goal is reached. BFS explores all possible paths level
by level, while DFS explores a path until it reaches a dead end and then backtracks.

In contrast, informed search algorithms leverage additional information to guide the
search process. These algorithms make use of heuristics or estimations of the distance
or cost to the goal state. A* search, for example, combines the cost to reach a particular
state with an estimate of the remaining cost to the goal. This heuristic information
guides the search towards the most promising paths and can lead to more efficient
solutions.

Problem-solving strategies complement search algorithms by providing systematic
approaches to finding solutions within a search space. Hill climbing is a strategy that
iteratively improves a solution by making small incremental changes in each step.
Simulated annealing simulates the cooling process in metallurgy and explores the
search space, allowing for occasional uphill moves to avoid getting stuck in local
optima. Genetic algorithms mimic the process of natural selection, evolving a population
of potential solutions through mutation and crossover operations.

The choice of search algorithm or problem-solving strategy depends on several factors,
including the nature of the problem, available information, and computational resources.
Each algorithm has its strengths and limitations, and the selection should be tailored to
the specific requirements of the problem at hand.

Search algorithms have numerous practical applications across various domains. In
databases, search algorithms enable efficient retrieval of relevant information based on



queries. Search engines employ sophisticated algorithms to index and search through
vast collections of web pages, providing users with accurate and timely results. In
artificial intelligence, search algorithms are crucial components in tasks such as
pathfinding, planning, constraint satisfaction, and optimization.

Furthermore, search algorithms have been instrumental in solving complex real-world
problems. They have been applied to logistical challenges, such as finding the most
efficient routes for delivery vehicles or scheduling tasks in a time-constrained
environment. In robotics, search algorithms enable autonomous navigation and path
planning for robots operating in dynamic environments.

The field of search algorithms continues to evolve, with ongoing research and
development focused on enhancing efficiency, scalability, and adaptability. New
algorithms and techniques are constantly being explored to address emerging
challenges posed by increasingly large and complex datasets.

In summary, search algorithms are indispensable tools in computer science and
information retrieval. They provide efficient means to search through vast amounts of
data, explore solution spaces, and find desired results. With a wide range of algorithms
and problem-solving strategies available, search algorithms continue to advance our
ability to solve complex problems and make informed decisions in various domains.

Problem-solving process and search space traversal
Problem-solving is a cognitive process that is essential for tackling complex challenges
and achieving specific goals. It involves a systematic approach that includes the
exploration of a search space to identify potential solutions. Let's delve deeper into the
problem-solving process and the traversal of a search space.

1. Problem Definition: The first step in problem-solving is to clearly define the problem.
This entails understanding the desired outcome, identifying the constraints and
limitations, and gathering relevant information about the problem domain. A well-defined
problem provides a solid foundation for effective problem-solving.

2. Search Space: The search space encompasses all possible states or configurations
that the problem can have. It represents the entire space of potential solutions. The
search space can take various forms, such as a grid for a maze-solving problem or a
complex set of parameters for an optimization problem. Traversing the search space
involves systematically exploring different states or configurations to find a solution.



3. Problem Decomposition: Complex problems can be challenging to solve as a
whole. Therefore, it is often beneficial to break them down into smaller, more
manageable sub-problems. This process, known as problem decomposition, allows for
the analysis and solving of each sub-problem separately. Problem decomposition
promotes a systematic and organized approach to problem-solving.

4. Search Algorithms: Search algorithms are employed to systematically explore the
search space and identify potential solutions. These algorithms navigate the search
space by evaluating different states or configurations and moving from one state to
another based on specific rules or heuristics. Uninformed search algorithms, such as
breadth-first search and depth-first search, systematically explore the search space
without additional information. Informed search algorithms, such as A* search, employ
heuristics to guide the search towards more promising paths.

5. Evaluation and Refinement: As the search algorithm traverses the search space,
potential solutions are evaluated against predefined criteria or objectives. This
evaluation aids in assessing the quality of each solution and allows for refinement or
optimization. If the solution falls short of expectations, the process may involve revisiting
previous steps, adjusting parameters, or exploring alternative problem-solving
strategies.

6. Solution Implementation: Once a suitable solution is identified and refined, it can be
implemented in the real-world context. Implementation may involve translating the
solution into a concrete plan of action, designing and constructing a physical system, or
developing software algorithms. The implementation phase bridges the gap between
the abstract problem-solving process and its practical application.

7. Solution Evaluation: After implementing the solution, it is crucial to evaluate its
effectiveness and assess its impact. This evaluation helps determine whether the
solution adequately addresses the original problem and achieves the desired goals. If
necessary, adjustments or optimizations can be made based on the evaluation results
to further enhance the solution.

The traversal of a search space is a crucial aspect of problem-solving, particularly in
domains where finding an optimal solution is of paramount importance. The search
space represents the entire range of potential solutions, and search algorithms navigate
through this space to explore and evaluate different options. The choice of a specific
search algorithm depends on various factors, including the characteristics of the
problem, the available information, and the desired performance metrics.



To summarize, the problem-solving process involves defining the problem,
decomposing it into manageable sub-problems, employing search algorithms to explore
the search space, evaluating and refining potential solutions, implementing the chosen
solution, and evaluating its effectiveness. Traversing the search space enables the
systematic exploration of potential solutions and contributes to the discovery of optimal
or near-optimal solutions for complex problems.

Key components of search algorithms
Search algorithms consist of several key components that are essential for their
operation. These components include the initial state, actions, transition model, and
goal state. Understanding these components in detail is crucial for comprehending how
search algorithms work and how they can be effectively utilized in various
problem-solving scenarios.

Initial State
In the context of search algorithms, the initial state refers to the starting point of the
search process. It represents the initial configuration or condition from which the
algorithm begins its exploration. The initial state serves as the foundation for
subsequent actions and transitions that the search algorithm will undertake.

The initial state can be explicitly defined based on the problem at hand. For example, in
a route planning problem, the initial state could be defined as the starting location or
node from which the algorithm will search for the optimal path. In a puzzle-solving
scenario, the initial state may represent the initial arrangement of puzzle pieces.

Alternatively, the initial state can be dynamically generated based on certain criteria.
This can occur when the problem space is vast or when there are multiple potential
starting points. In such cases, the search algorithm may generate different initial states
to explore various possibilities or to distribute the search process across multiple
starting points.

Once the initial state is established, the search algorithm applies a series of actions and
transitions to explore the problem space and search for the desired solution. These
actions and transitions depend on the specific search algorithm being used and the
problem being solved.

The initial state serves as a reference point for the search algorithm to evaluate and
compare subsequent states during the search process. By examining the initial state



and its associated properties, the algorithm can determine the feasibility and optimality
of the subsequent states it encounters.

Actions:
Actions play a crucial role in search algorithms as they determine the set of possible
moves or operations that can be performed at each state during the search process.
They represent the available choices or decisions that can be made at any given point
to explore the problem space.

The set of actions is dependent on the specific problem domain and the constraints
associated with it. In a maze-solving problem, for example, the actions may include
moving up, down, left, or right within the maze. These actions define the possible
movements that can be taken to navigate through the maze and search for the exit.

In other problem domains, the set of actions can vary significantly. In a chess game,
actions may encompass different moves such as advancing a pawn, capturing an
opponent's piece, or castling. In a scheduling problem, actions may involve assigning
tasks to different time slots or allocating resources efficiently.

It is important to note that the set of actions is typically defined based on the problem's
rules and constraints. These rules dictate the permissible moves or operations at each
state, ensuring that the search algorithm explores valid and feasible solutions.

During the search process, the algorithm applies the defined set of actions to transition
from one state to another. By exploring different combinations of actions, the algorithm
can navigate through the problem space, searching for the desired solution or goal
state.

The choice of actions at each state can significantly impact the efficiency and
effectiveness of the search algorithm. Well-defined and strategically chosen actions can
guide the search towards the optimal solution, while inadequate or poorly chosen
actions may lead to suboptimal or inefficient search paths.

Transition Model:
The transition model is a crucial component of search algorithms as it defines how the
state changes when an action is executed. It specifies the effect of applying an action to
the current state, allowing the search algorithm to explore different states and progress
towards the goal state.



The transition model is typically represented as a function that takes a current state and
an action as inputs and produces the resulting state after the action is applied. This
function encapsulates the rules and dynamics of the problem domain, determining how
the system or environment evolves in response to the chosen action.

When the search algorithm selects an action to execute, it uses the transition model to
generate the next state. This transition from the current state to the next state forms the
basis for the algorithm's exploration and progress in the search process. By repeatedly
applying actions and updating the state based on the transition model, the search
algorithm traverses the problem space and moves closer to the goal state.

The transition model is problem-specific and depends on the nature of the problem
being solved. For example, in a puzzle-solving scenario, the transition model may
define how the positions of puzzle pieces change when a specific move is made. In a
robotic navigation problem, the transition model may describe how the robot's position
and orientation change when it moves in a certain direction.

It is important to accurately define the transition model to ensure the correctness and
effectiveness of the search algorithm. A well-defined transition model enables the
algorithm to explore the problem space systematically and determine the consequences
of different actions. In some cases, the transition model may incorporate probabilities or
uncertainties, such as in probabilistic search algorithms or stochastic environments.

Goal State:
The goal state is a critical concept in search algorithms as it represents the desired or
target configuration that the algorithm aims to achieve. It defines the condition or criteria
that need to be satisfied for the search process to be considered successful.

The nature of the goal state varies depending on the specific problem being solved. In
some cases, the goal state may be explicitly provided or defined in advance. For
instance, in a maze-solving problem, the goal state could be explicitly specified as the
location of the maze exit. In a chess game, the goal state may be defined as a
checkmate position where the opponent's king is in a state of capture.

In other cases, the goal state may be dynamically determined based on specific
conditions or constraints. For example, in a scheduling problem, the goal state could be
defined as an arrangement where all tasks are assigned and scheduled optimally,
meeting specific criteria such as minimizing costs or maximizing efficiency.



The goal state serves as a termination condition for the search algorithm. Once the
algorithm reaches a state that satisfies the criteria of the goal state, it can halt the
search process as the desired outcome has been achieved.

It is important to note that there can be multiple possible goal states depending on the
problem domain. In some cases, there may be a single optimal goal state, while in
others, there may be multiple acceptable solutions. The search algorithm's objective is
to find at least one solution that satisfies the goal state criteria, and in certain cases, it
may aim to find the most optimal solution among multiple possibilities.

Determining an appropriate goal state is essential for the success of the search
algorithm. It guides the algorithm's exploration and provides a clear objective to work
towards. Additionally, the goal state helps evaluate and compare different states
encountered during the search process, enabling the algorithm to make decisions that
bring it closer to the desired outcome.

Search algorithms utilize these key components to systematically explore the state
space, starting from the initial state and progressing through subsequent states by
applying actions based on the transition model. The search process continues until it
reaches a state that satisfies the goal state condition or until all possible options have
been exhausted.

There are various types of search algorithms that employ these components in different
ways, such as depth-first search, breadth-first search, iterative deepening search, A*
search, and more. Each algorithm employs a specific strategy for traversing the state
space and determining the most promising paths to the goal state.

Furthermore, search algorithms can be enhanced with additional techniques and
heuristics to improve their efficiency and effectiveness. These techniques may include
pruning strategies, intelligent search space exploration, and informed decision-making
based on domain-specific knowledge or heuristics.

In summary, the key components of search algorithms, namely the initial state, actions,
transition model, and goal state, form the foundation for efficient and systematic
exploration of problem spaces. By appropriately defining and manipulating these
components, search algorithms can navigate complex search spaces, find optimal or



near-optimal solutions, and provide valuable insights in various domains, including
artificial intelligence, data analysis, and problem-solving.

Uninformed search algorithms
Uninformed search algorithms are a fundamental concept in the field of artificial
intelligence and computer science. These algorithms form the backbone of search
strategies employed by intelligent systems to navigate through complex problem spaces
and find solutions. Unlike informed search algorithms, which have access to
domain-specific knowledge, uninformed search algorithms rely solely on the structure of
the problem and the available actions to guide their search process. They explore the
search space systematically, without any prior knowledge or heuristics about the
problem at hand. By exhaustively exploring possible paths and states, these algorithms
gradually converge towards a solution, making them essential in various
problem-solving domains. Whether it's finding the shortest path in a network, solving
puzzles, or navigating through a maze, uninformed search algorithms serve as valuable
tools for exploring and discovering solutions in a vast array of real-world scenarios.

Breadth-First Search
Breadth-First Search (BFS) is an uninformed search algorithm used to explore and
traverse graphs or tree structures. It systematically examines all the neighboring nodes
or vertices at the current depth level before moving on to nodes at the next depth level.
BFS operates based on the principle of "breadth," where it explores all nodes at the
current level before progressing deeper into the search space.

The algorithm begins by selecting a start node and adds it to a queue. It then iteratively
expands the search by dequeuing nodes from the front of the queue, exploring their
neighboring nodes, and enqueueing them if they have not been visited before. This
process continues until the queue becomes empty, indicating that all reachable nodes
have been visited.

BFS guarantees that it will find the shortest path between the start node and any other
reachable node, as long as each edge has the same weight. It discovers solutions by
systematically searching outward from the starting point, gradually expanding the
search radius level by level.



BFS finds applications in various domains, such as network routing, web crawling,
social network analysis, and puzzle solving. Its ability to find the shortest path makes it
particularly useful in scenarios where finding an optimal solution is crucial.

However, it's important to note that BFS may encounter performance issues in large and
complex search spaces due to its memory requirements. The algorithm needs to store
all the visited nodes in memory to ensure it explores all possible paths. Therefore, for
extremely large graphs, alternative search algorithms like Depth-First Search or
heuristic-based search algorithms may be more suitable.

Completeness, optimality, and time complexity analysis:
● Completeness: BFS is a complete search algorithm, meaning that it is

guaranteed to find a solution if one exists. This property holds for finite,
connected, and non-blocking search spaces. BFS explores the entire search
space systematically, leaving no unvisited nodes at any level. Therefore, if a
solution exists, BFS will eventually find it.

● Optimality: BFS guarantees that it finds the shortest path between the start
node and any other reachable node, provided that all edges have the same
weight. By exploring nodes level by level, BFS ensures that the first occurrence
of a goal node is reached via the shortest path. However, in scenarios where
edge weights vary, BFS may not yield an optimal solution.

● Time Complexity: The time complexity of BFS depends on the number of nodes
and edges in the search space. In the worst case, where all nodes are reachable,
BFS visits every node once and examines its neighboring edges. As a result, the
time complexity of BFS is O(|V| + |E|), where |V| is the number of nodes
(vertices) and |E| is the number of edges in the graph or tree. Additionally, BFS
requires additional memory to store the visited nodes and the queue, which
contributes to its space complexity.

Understanding the principles, completeness, optimality, and time complexity of BFS
provides a foundation for utilizing this algorithm effectively. By employing BFS, you can
explore and solve problems in various domains, ensuring a systematic and reliable
search process while discovering the shortest path or finding solutions in a wide range
of scenarios.



Depth-First Search (DFS)
Depth-First Search (DFS) is an uninformed search algorithm that explores and
traverses graph or tree structures. It follows a different traversal strategy compared to
Breadth-First Search (BFS), as DFS prioritizes deep exploration along each branch
before backtracking.

The key idea behind DFS is to traverse as far as possible along a path before exploring
other paths. This is accomplished through the following principles and mechanics:

1. Starting from a selected start node, DFS explores one of its neighboring
unvisited nodes connected to the current node.

2. The algorithm marks the current node as visited and recursively applies
DFS to the chosen neighboring node.

3. This process continues, exploring deeper into the graph or tree, until there
are no more unvisited neighbors for the current node.

4. At this point, DFS backtracks to the previous node and repeats steps 1 to
3 for any remaining unvisited neighbors of the previous node.

5. The algorithm continues this exploration and backtracking process until all
nodes have been visited.

DFS utilizes a stack data structure to keep track of the nodes being explored. When
visiting a node, it is pushed onto the stack, and when backtracking, nodes are popped
off the stack to explore other branches. This stack-based approach allows DFS to
maintain a record of the current path and easily backtrack to explore alternative paths.

The traversal strategy of DFS can be visualized as a depth-first exploration of a graph
or tree, where it follows a path as deeply as possible before backtracking and exploring
other paths. This strategy can be beneficial in scenarios where finding a solution quickly
or exploring a particular branch extensively is more important than finding the shortest
path.

One important consideration when implementing DFS is handling cycles in the graph.
Without proper precautions, DFS may enter infinite loops by repeatedly revisiting nodes
in a cycle. To avoid this, it is crucial to keep track of visited nodes and prevent revisiting
them during the exploration process.

While DFS is not guaranteed to find the shortest path in a graph, it has various
applications. It can be used for maze solving, cycle detection, topological sorting,
backtracking problems, and graph traversal. DFS is especially useful when exhaustive
search or deep exploration is required.



It's important to note that DFS may not be suitable for certain scenarios, such as finding
the shortest path or in graphs with large branching factors, where it may consume
excessive time or memory resources. In such cases, alternative search algorithms like
BFS or algorithms with heuristics may be more appropriate.

Completeness, optimality, and time complexity analysis:
Completeness, optimality, and time complexity are important factors to consider when
analyzing Depth-First Search (DFS):

● Completeness: DFS is not a complete search algorithm. Completeness refers to
the ability of an algorithm to find a solution if one exists. DFS can get stuck in
infinite loops in graphs with cycles or when there are infinite paths to explore.
Therefore, without additional measures, DFS may not find a solution even if it
exists. However, if the search space is finite or the implementation includes
mechanisms to avoid revisiting nodes, DFS can be made complete.

● Optimality: DFS does not guarantee optimality in finding the shortest path. It
may find a solution that requires more steps or has a longer path compared to
other algorithms. Since DFS explores paths deeply before backtracking, it may
encounter a solution earlier in the search process but not necessarily the optimal
one. If finding the shortest path is a requirement, alternative algorithms like
Breadth-First Search (BFS) or algorithms with heuristics should be considered.

● Time Complexity: The time complexity of DFS depends on the structure of the
graph or tree being traversed. In the worst case, where all nodes are reachable,
DFS may visit every node once and examine its neighboring edges. If the graph
has branching factors or cycles, the time complexity can be exponential. The
time complexity of DFS is typically expressed as O(|V| + |E|), where |V|
represents the number of nodes (vertices) and |E| represents the number of
edges in the graph or tree. It is important to note that the actual performance of
DFS can vary based on factors such as the implementation, search space, and
the order in which nodes are explored.

It's worth mentioning that DFS has advantages in terms of space complexity. Since it
only needs to keep track of the current path on the stack, the space complexity of DFS
is relatively low compared to algorithms like BFS. However, this space efficiency comes
at the cost of potentially higher time complexity and the lack of optimality guarantees.



Overall, while DFS may not be complete or optimal in all cases, it can be a valuable
search algorithm in certain scenarios. It is particularly useful when deep exploration and
exhaustive search are desired, such as in maze solving or backtracking problems. By
understanding its limitations and considering the specific characteristics of the problem
at hand, DFS can be effectively applied to explore paths and find solutions efficiently.

Comparison of BFS and DFS: advantages, disadvantages, and use
cases
When comparing Breadth-First Search (BFS) and Depth-First Search (DFS), it's
important to consider their respective advantages, disadvantages, and use cases:

Advantages of Breadth-First Search (BFS):
1. Completeness: BFS is a complete search algorithm, meaning it guarantees finding a
solution if one exists. It systematically explores all nodes at each depth level, ensuring
that the shortest path to a goal node is found in graphs with non-uniform edge weights.
2. Optimal Solution: BFS guarantees finding the shortest path between the start node
and a goal node when all edge weights are equal. It explores nodes level by level, and
the first occurrence of a goal node is reached via the shortest path.
3. Wide Exploration: BFS explores the breadth of a graph, visiting neighboring nodes
before moving deeper. This makes it suitable for scenarios where finding a solution at a
shallow depth is preferred, such as web crawling or social network analysis.

Disadvantages of Breadth-First Search (BFS):
1. Memory Consumption: BFS requires more memory compared to DFS. It needs to
store all visited nodes in memory, which can be problematic in large graphs with a high
branching factor or limited memory resources.
2. Slower in Deep Graphs: BFS may be slower than DFS when the search space is
deep or has many levels. It explores all nodes at each level before moving to the next,
which can result in unnecessary exploration of distant nodes.

Use Cases of Breadth-First Search (BFS):
1. Shortest Path: BFS is well-suited for finding the shortest path in graphs with uniform
edge weights. It can be used in navigation systems, routing protocols, or GPS
applications.



2. Web Crawling: BFS is used in web crawlers to systematically explore and discover
web pages, following links from one page to another in a breadth-first manner.

Advantages of Depth-First Search (DFS):
1. Memory Efficiency: DFS uses less memory compared to BFS since it only needs to
store the current path on a stack. This makes it suitable for memory-constrained
environments or graphs with a large number of nodes.
2. Faster Exploration in Deep Graphs: DFS can be faster than BFS in graphs with
deep levels or when the solution is likely to be found at a deeper depth. It explores
paths deeply before backtracking, potentially reaching a solution earlier.

Disadvantages of Depth-First Search (DFS):
1. Completeness and Optimality: DFS is not a complete or optimal search algorithm.
It can get stuck in infinite loops in graphs with cycles and may not find the shortest path.
Additional precautions are necessary to handle these limitations.
2. Sensitivity to Path Order: The order of exploring paths can impact the efficiency
and outcome of DFS. Different path orders may lead to different solutions or prolonged
search times.

Use Cases of Depth-First Search (DFS):
1. Maze Solving: DFS is commonly used to solve mazes, where it explores paths
deeply until it reaches the exit or encounters a dead end.
2. Backtracking: DFS is effective in problems that involve backtracking, such as
solving puzzles, constraint satisfaction, or generating permutations.

In summary, BFS and DFS have distinct advantages, disadvantages, and use cases.
BFS is advantageous in terms of completeness and finding optimal solutions, while DFS
excels in memory efficiency and faster exploration in deep graphs. The choice between
BFS and DFS depends on the problem characteristics, desired outcomes, and available
resources.


