
Lesson 15: CNNs and RNNs

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep neural network that is
primarily used for image processing tasks such as image classification, object detection,
and image segmentation. The architecture of a CNN is designed to take advantage of
the 2D structure of an input image, in contrast to standard artificial neural networks
which are better suited to flat inputs.

They have emerged as a powerful tool in deep learning due to their ability to learn
hierarchical features from images. The architecture of a CNN is typically composed of
several layers that perform different operations.

The first layer of a CNN is a convolutional layer that applies filters to the input image to
identify simple features, such as edges and corners. The output of the convolutional
layer is then passed through an activation function, such as ReLU, to introduce
non-linearity and model complex relationships between features. This is followed by a
pooling layer, which downsamples the feature maps and reduces the spatial dimensions
of the input.



Additional convolutional and pooling layers are then used to extract increasingly
complex and abstract features from the input data. These layers help the network learn
high-level representations of the input image and achieve state-of-the-art performance
on a range of computer vision tasks such as image classification, object detection, and
semantic segmentation.

Finally, the output of the convolutional layers is flattened and passed through fully
connected layers that make the final classification decision based on the extracted
features. One of the main advantages of CNNs is their ability to automatically learn
hierarchical representations of the input data, where each layer captures increasingly
complex and abstract features of the input. This makes them ideal for processing large,
high-dimensional datasets such as images and videos.

In recent years, there have been significant advances in CNN architectures, including
the development of residual connections and attention mechanisms, which have led to
further improvements in performance. Additionally, CNNs have been successfully
applied to a variety of other tasks, such as natural language processing and speech
recognition, demonstrating their versatility as a deep learning model.

Convolution and pooling layers
Convolutional neural networks (CNNs) are a type of neural network that use
convolutional layers to extract features from the input data. Convolution is a
mathematical operation that applies a filter (also known as a kernel or a weight) to the
input data to produce a new feature map. The filter is slid over the input data in a series
of strides, with each stride producing a new feature map. The resulting feature map
represents the presence of a certain pattern or feature in the input data.

After the convolutional layers, pooling layers are used to downsample the feature maps,
which reduces their spatial dimensions. This is done by taking the maximum (max
pooling) or average (average pooling) value of a small window of the feature map. The
pooling operation reduces the number of parameters in the network, which helps
prevent overfitting and makes the model more efficient.

Max pooling and average pooling are the most commonly used types of pooling in
CNNs. Max pooling takes the maximum value of a small window in the feature map,
while average pooling takes the average value. The choice of pooling method depends
on the specific task and the properties of the data being used. There are also other



types of pooling methods, such as Lp pooling and stochastic pooling, which have been
used in various applications.

In addition to pooling, there are other types of layers used in CNNs, such as dropout
layers, which randomly drop out some of the neurons in the network during training to
prevent overfitting, and batch normalization layers, which normalize the activations of
the previous layer to improve the stability and speed of training. The architecture and
combination of these layers can greatly affect the performance of the network.



CODE EXAMPLE
Convolutional Neural Networks (CNNs) are commonly used in computer vision tasks
such as image classification and object detection. In CNNs, convolution and pooling

layers are used to extract features from the input images. The following code
demonstrates how to implement convolution and pooling layers in a simple CNN using

TensorFlow.

import tensorflow as tf

# Define input shape

input_shape = (28, 28, 1)

# Define model

model = tf.keras.models.Sequential([

# Add convolutional layer

tf.keras.layers.Conv2D(filters=32, kernel_size=3,

activation='relu', input_shape=input_shape),

# Add pooling layer

tf.keras.layers.MaxPool2D(pool_size=(2, 2)),

# Flatten output

tf.keras.layers.Flatten(),

# Add dense layers

tf.keras.layers.Dense(units=128, activation='relu'),

tf.keras.layers.Dense(units=10, activation='softmax')

])

# Compile model

model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

# Train model

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=10)



In this code, we define a simple CNN model with a convolutional layer and a pooling
layer. The convolutional layer applies 32 filters with a kernel size of 3x3 and uses the

ReLU activation function. The pooling layer downsamples the output of the
convolutional layer by taking the maximum value in a 2x2 region. The flattened output is
then passed through two dense layers with ReLU activation and a final output layer with

a softmax activation function.

The model is compiled with the Adam optimizer and categorical cross-entropy loss
function, and trained on a dataset with 10 epochs. By implementing convolution and
pooling layers in CNNs, we can effectively extract meaningful features from input

images and improve the accuracy of image classification and object detection tasks.

Transfer learning
Transfer learning is a powerful technique that can save time and improve the accuracy
of deep learning models. It has become a popular method in recent years, especially
with the rise of deep learning and the availability of pre-trained models. Transfer
learning allows researchers and developers to leverage the knowledge and expertise of
the deep learning community by using pre-trained models, instead of starting from
scratch.

In transfer learning, the pre-trained model is typically trained on a large dataset, such as
ImageNet, and has learned to extract features that are useful for a wide range of
computer vision tasks. The model can then be fine-tuned on a smaller dataset that is
specific to the new task, by retraining the final layers of the model. This approach can
be particularly useful when working with limited amounts of data, as it allows the model
to quickly learn features that are relevant to the new task, while still leveraging the
knowledge gained from the pre-training.

Transfer learning has been shown to be particularly effective in computer vision tasks
such as object detection, image classification and segmentation. In addition, it has also
been applied to other domains such as natural language processing and speech
recognition. For example, pre-trained language models such as BERT and GPT-2 have
been used as the starting point for a wide range of NLP tasks, such as sentiment
analysis, text classification and question-answering.



Overall, transfer learning has become an essential tool in the deep learning toolbox,
allowing researchers and developers to build accurate models quickly and efficiently. By
leveraging the knowledge and expertise of the deep learning community, transfer
learning has opened up new possibilities for a wide range of applications, and will
continue to be an important area of research and development in the years to come.

CODE EXAMPLE
Here is an example of using a pre-trained VGG model as a base for transfer learning in
image classification:

import tensorflow as tf

from tensorflow.keras.applications.vgg16 import VGG16

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.models import Model

# Load the pre-trained VGG model

vgg_model = VGG16(weights='imagenet', include_top=False,

input_shape=(224, 224, 3))

# Freeze the layers of the pre-trained model

for layer in vgg_model.layers:

layer.trainable = False

# Add custom layers for classification

x = Flatten()(vgg_model.output)

x = Dense(1024, activation='relu')(x)

x = Dense(256, activation='relu')(x)

predictions = Dense(10, activation='softmax')(x)

# Create the transfer learning model

transfer_model = Model(inputs=vgg_model.input, outputs=predictions)



# Compile the model

transfer_model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

# Train the model with new data

transfer_model.fit(train_data, epochs=10,

validation_data=validation_data)

In this example, we load a pre-trained VGG16 model from the Keras library, which was
pre-trained on the ImageNet dataset. We then freeze the layers of the pre-trained model

so that we can use it as a fixed feature extractor. We add some custom layers for
classification and create a new model using the Keras Model API. We then compile the
model with an optimizer and loss function, and train the model on new data using the

fit() method.

By using a pre-trained model as a base for transfer learning, we can leverage the
knowledge learned by the pre-trained model to solve new, related problems with less
data and computational resources. In this example, we can use the pre-trained VGG16

model to classify images into 10 categories with high accuracy.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are specifically designed to handle sequential data
that has a temporal or sequential relationship, such as time series or natural language.
RNNs allow the network to capture temporal dependencies in the data by processing
and transmitting information across time steps.

In RNNs, the output at each time step is dependent on the input at the current time step
and the hidden state of the previous time step. This hidden state is passed forward in
time and serves as a memory for the network, allowing it to retain information about
previous time steps. The process of transmitting the hidden state across time steps is
called recurrence, which is the distinguishing feature of RNNs.



One of the challenges of training RNNs is the vanishing gradient problem, which occurs
when the gradients become extremely small as they are propagated backward in time.
This can cause the weights of the earlier layers to be updated very slowly, which can
result in slow convergence or even convergence to a suboptimal solution.

To address this issue, several architectures have been proposed, such as Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). These architectures
use gating mechanisms to selectively update the hidden state, allowing the network to
remember or forget information as needed.

LSTM, for example, uses a memory cell that can selectively forget or add new
information to the current hidden state, while GRU uses a gating mechanism to control
the flow of information into and out of the hidden state. These architectures have been
shown to be very effective in modeling sequential data and have been used in a wide
range of applications, including speech recognition, machine translation, and time series
prediction.

To train recurrent neural networks (RNNs), we use a variant of backpropagation called
backpropagation through time (BPTT). BPTT involves unrolling the network across time
steps, and computing gradients at each time step. The gradients are then used to
update the weights of the network using an optimization algorithm such as stochastic
gradient descent.

However, training RNNs using BPTT can be challenging due to the problem of
vanishing and exploding gradients. Vanishing gradients occur when the gradients
become very small as they are propagated back in time, which can make it difficult for
the network to learn long-term dependencies. Exploding gradients occur when the
gradients become very large, which can cause the weights to update too much and
destabilize the network.

To address these issues, several techniques have been developed. One common
technique is to use gradient clipping, which involves setting a threshold on the norm of
the gradients and scaling them down if they exceed the threshold. Another technique is
to use gated recurrent units (GRUs) or long short-term memory (LSTM) cells, which are
designed to better capture long-term dependencies in the data.

In summary, training RNNs using BPTT can be challenging due to the problem of
vanishing and exploding gradients. However, several techniques exist to mitigate these
issues, such as gradient clipping and the use of specialized cell types like GRUs and
LSTMs.



LSTM Networks
LSTM (Long Short-Term Memory) networks are a type of recurrent neural network
(RNN) that are designed to handle the vanishing and exploding gradient problem that
can occur in standard RNNs. LSTM networks achieve this by introducing a gating
mechanism that allows the network to selectively remember or forget information from
previous time steps.

In an LSTM network, there are three types of gates: the input gate, the forget gate, and
the output gate. The input gate controls how much information from the current time
step should be added to the memory cell. The forget gate controls how much
information from the previous time step should be forgotten, and the output gate
controls how much information from the memory cell should be output to the next time
step.

During training, the weights of the LSTM network are updated using backpropagation
through time, which involves computing gradients at each time step and propagating
them backwards through the network.

LSTM networks are commonly used for tasks involving sequential data, such as speech
recognition, language translation, and text prediction. They have been shown to achieve
state-of-the-art performance in many of these tasks and have become an important tool
in the field of natural language processing.



EXAMPLE CODE

This code demonstrates how to build and train a simple Long Short-Term Memory
(LSTM) network using the Keras library. The LSTM network is a type of recurrent neural
network (RNN) that is commonly used for modeling sequential data, such as time series

or natural language.
The architecture of the LSTM network consists of a single LSTM layer with 128 memory

units, followed by a dense layer with a single output unit and a sigmoid activation
function for binary classification. The model is compiled using the binary cross-entropy

loss function, the Adam optimizer, and the accuracy metric.
The network is trained on a dataset X_train and y_train with 10 time steps per
sequence, using a batch size of 32 and for 10 epochs. Additionally, the model's

performance is evaluated on a separate validation set (X_test, y_test) during training to
monitor its generalization ability.

from keras.models import Sequential

from keras.layers import LSTM, Dense

# Define the LSTM network architecture

model = Sequential()

model.add(LSTM(128, input_shape=(10, 1)))

model.add(Dense(1, activation='sigmoid'))

# Compile the model

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

# Train the model

model.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))



GRU Networks
GRU, short for Gated Recurrent Unit, is a type of recurrent neural network (RNN)
architecture that is used for sequence modeling tasks, such as natural language
processing and speech recognition. It was introduced in 2014 by Cho et al. and is a
variant of the LSTM (Long Short-Term Memory) architecture.

Like LSTMs, GRUs are designed to address the vanishing gradient problem in
traditional RNNs, which occurs when gradients become too small to propagate back
through the network during training. This can make it difficult for the network to learn
long-term dependencies in sequential data.

GRUs use a gating mechanism to selectively update and reset information in the hidden
state of the network. The gate mechanism consists of an update gate, which controls
how much of the previous state should be retained, and a reset gate, which controls
how much of the new input should be added to the current state. The gates are learned
during training and allow the network to selectively forget or remember information over
time.

Compared to LSTMs, GRUs have fewer parameters and are faster to train, making
them a popular choice for applications that require real-time processing or operate on
large datasets. They have been shown to achieve state-of-the-art performance on a
range of natural language processing tasks, including language modeling, machine
translation, and sentiment analysis.

As with other neural network architectures, there are many variations and modifications
of the GRU architecture, including multi-layered GRUs and bi-directional GRUs, which
process the input sequence in both forward and backward directions.


