
Lesson 12: Image segmentation and feature
extraction
Image segmentation and feature extraction are fundamental tasks in computer vision
that play a crucial role in understanding and analyzing images. These tasks enable the
extraction of meaningful information from images, leading to various applications such
as object recognition, image understanding, medical imaging, and video analysis.

Image segmentation involves partitioning an image into distinct regions or segments
based on certain criteria. It aims to group pixels or regions that share similar visual
properties, allowing for the analysis and interpretation of image content at a more
granular level. By segmenting an image, it becomes possible to identify objects,
boundaries, and regions of interest, facilitating tasks such as object recognition, image
editing, and scene understanding.

There are various algorithms and techniques used for image segmentation, ranging
from simple thresholding and region-based methods to more advanced approaches
such as edge detection and semantic segmentation. These techniques enable the
extraction of meaningful regions and boundaries, enabling more precise analysis and
interpretation of image content.

Feature extraction, on the other hand, focuses on capturing relevant and distinctive
information from images. It involves identifying and describing key characteristics or
patterns in an image that can be used for further analysis or recognition tasks. Features
can include local descriptors such as texture, color, shape, or higher-level semantic
representations captured by deep learning models. By extracting relevant features,
images can be effectively represented and compared, enabling tasks such as image
classification, object detection, and image retrieval.

Image segmentation and feature extraction are crucial steps in various computer vision
applications. They provide the foundation for understanding image content, enabling
machines to recognize objects, analyze scenes, and make informed decisions based on
visual information. The advancements in segmentation algorithms and feature
extraction techniques, coupled with the availability of large-scale datasets and powerful
deep learning models, have significantly enhanced the capabilities of computer vision
systems. Continued research and development in these areas are driving further
progress and opening up new possibilities in areas such as healthcare, autonomous
systems, augmented reality, and more.



Image Segmentation and Algorithms:
Image segmentation is a fundamental task in computer vision that involves dividing an
image into meaningful and semantically coherent regions or segments. The goal of
image segmentation is to partition an image into regions that correspond to different
objects or regions of interest, enabling more detailed analysis and understanding of the
image content.

The process of image segmentation assigns a label or identifier to each pixel in the
image, indicating which segment or region it belongs to. The resulting segmentation
map provides a spatial delineation of different objects or regions, allowing for further
analysis, manipulation, or extraction of specific areas of interest.

Image segmentation techniques can be broadly categorized into two main types:
supervised and unsupervised.

Supervised segmentation techniques require prior knowledge or training data, where
annotated images are used to train a model that can then generalize and segment new
images. This approach typically involves machine learning algorithms, such as



pixel-level classification methods or semantic segmentation networks, which learn to
assign labels to pixels based on their visual features.

Unsupervised segmentation techniques, on the other hand, do not require any prior
knowledge or training data. These techniques rely on intrinsic properties of the image,
such as color, texture, or intensity, to group pixels into coherent regions. Common
unsupervised techniques include clustering algorithms, graph-based methods, or
boundary detection algorithms.

Image segmentation has a wide range of applications across various domains. In
medical imaging, it is used for organ segmentation, tumor detection, or cell counting. In
autonomous driving, it plays a crucial role in detecting and segmenting objects on the
road, such as pedestrians or vehicles. In satellite imagery, segmentation is used for land
cover classification or urban planning. Additionally, image segmentation is employed in
computer graphics, object recognition, image editing, and many other areas where
precise understanding of image content is required.

Image segmentation remains an active area of research, aiming to develop more
accurate, efficient, and robust techniques. The challenges in image segmentation
include handling complex scenes with occlusions, addressing variations in illumination
and viewpoint, dealing with ambiguous boundaries, and integrating semantic
information for more context-aware segmentation. Ongoing advancements in deep
learning and neural networks have significantly improved the performance and accuracy
of image segmentation, paving the way for more sophisticated and reliable
segmentation methods.

Thresholding and Region-based Segmentation:
Thresholding involves comparing pixel values to a threshold and classifying them as
either foreground or background based on this comparison. It is a straightforward
technique that converts a grayscale image into a binary image by assigning a value of 0
or 1 to each pixel. Pixels with intensity values below the threshold are classified as
background, while pixels with intensity values above the threshold are classified as
foreground. Thresholding is commonly used when there is a clear separation between
the foreground and background based on pixel intensity. It is a simple and efficient
method for segmenting images with uniform regions and distinct boundaries.

On the other hand, region-based segmentation methods focus on grouping pixels based
on their similarity to form coherent regions. These methods consider not only individual



pixel values but also the relationships between neighboring pixels. Region growing and
region splitting/merging are two popular region-based segmentation techniques.

Region growing starts with seed pixels and iteratively adds neighboring pixels that meet
certain similarity criteria. The similarity can be defined based on pixel intensity, color,
texture, or other features. As pixels are added, the region expands until no more pixels
satisfying the similarity criterion can be included. Region growing can effectively capture
regions with uniform properties and is useful for segmenting images with smooth color
transitions.

Region splitting/merging algorithms divide the image into smaller regions initially and
then merge adjacent regions that exhibit similarity in their pixel properties. The merging
process continues until all regions become homogeneous in terms of their properties.
This approach is useful for segmenting images with complex structures and regions that
overlap or share similar properties.

Both thresholding and region-based segmentation have their strengths and limitations.
Thresholding is simple and efficient but may not be suitable for images with complex
intensity distributions or overlapping regions. Region-based segmentation methods offer



more flexibility in capturing regions with similar properties but may be computationally
intensive and sensitive to initialization.

The choice between thresholding and region-based segmentation depends on the
specific characteristics of the image and the segmentation goals. Thresholding is ideal
for images with clear intensity-based separation, while region-based segmentation is
more suitable for capturing coherent regions based on similarity criteria beyond pixel
intensity.

Edge Detection and Contour Extraction:
Edge detection algorithms, such as the Canny edge detector, play a crucial role in
computer vision by detecting and localizing regions of significant intensity changes in an
image. These intensity changes often correspond to the boundaries between different
objects or regions within the image. The Canny edge detector employs a series of steps
to accomplish this task. First, the image is smoothed using techniques like Gaussian
filtering to reduce noise and ensure a more accurate detection of edges. Then, the
image gradient is calculated to identify areas of rapid intensity change, which are
potential edge locations. Thresholding and hysteresis are applied to determine the final
edges by selecting pixels with gradient values above a certain threshold and connecting
them to form continuous edge contours. Other edge detection algorithms, such as the
Sobel and Prewitt operators, also utilize gradient-based methods to detect edges, but
may differ in their specific approaches or operator masks.



Contour extraction, on the other hand, focuses on extracting the outlines or contours of
objects present in an image. Contours are curves that represent the boundaries of
objects, encapsulating their shape and structure. Contour extraction algorithms can
work directly on edge maps obtained through edge detection algorithms or utilize other
image processing techniques. These algorithms typically involve tracing the connected
edge pixels to form continuous curves or applying advanced techniques like the Hough
transform to identify specific patterns or shapes in the image. The Hough transform, for
instance, maps edge points to a parameter space and identifies the parameters that
represent the desired shapes, enabling the extraction of precise contours.

The combination of edge detection and contour extraction techniques allows for the
identification and extraction of object boundaries or regions of interest within an image.
By detecting edges, edge detection algorithms provide a foundation for subsequent
contour extraction. Contour extraction techniques, in turn, utilize the detected edges to
extract the precise outlines or curves of objects, providing valuable information about
the shape, structure, and spatial relationships between objects in the image.

These techniques are widely used in various computer vision applications. For example,
in object recognition tasks, edge detection and contour extraction are employed to
extract discriminative features and localize objects within an image. In shape analysis,
they enable the characterization and comparison of object shapes. In image
segmentation, they aid in separating objects from the background by delineating their
boundaries. Moreover, in applications that require precise localization and
understanding of object boundaries, such as robotics, augmented reality, or medical
imaging, the combination of edge detection and contour extraction techniques is
essential for accurate perception and analysis.

It is important to note that while edge detection algorithms focus on identifying intensity
changes and detecting edges, contour extraction techniques operate on the detected
edges to extract the precise outlines or curves of objects. Together, these techniques
provide valuable information about the shape and structure of objects within an image,
enabling a deeper understanding and analysis of visual data.

Semantic Segmentation and Instance Segmentation:
Semantic segmentation is a computer vision technique that involves assigning a class
label to each pixel in an image, effectively dividing the image into different regions
corresponding to different object categories or semantic classes. The main objective is
to classify each pixel into meaningful classes that represent objects or regions of
interest within the image. For example, pixels belonging to the classes "person," "car,"



"building," or "tree" can be identified and labeled accordingly. By providing a pixel-level
understanding of the image, semantic segmentation enables comprehensive scene
understanding and analysis.

The application of semantic segmentation is particularly important in domains such as
autonomous driving, where it is crucial to accurately identify and delineate different
objects and their boundaries in real-time. By segmenting the image into meaningful
classes, autonomous vehicles can better perceive the environment, recognize
obstacles, and make informed decisions accordingly. Semantic segmentation also finds
applications in various other areas, including object detection, scene understanding,
image editing, and video analysis.

On the other hand, instance segmentation takes semantic segmentation to the next
level by not only labeling pixels with object classes but also distinguishing individual
instances of the same class. In instance segmentation, each object instance is assigned
a unique identifier or mask, allowing for precise object localization and distinction. This
means that even if multiple objects of the same class are present in the image, they are
individually identified and differentiated. Instance segmentation provides more detailed
information about the objects in the scene, enabling advanced applications such as
object tracking, instance-level recognition, counting, or analysis of object-level
attributes.



Achieving accurate semantic segmentation and instance segmentation is a challenging
task that requires sophisticated algorithms and deep learning models. Convolutional
neural networks (CNNs) have revolutionized these segmentation tasks, and various
advanced architectures have been developed to address the specific challenges of
semantic and instance segmentation. Models such as U-Net, Mask R-CNN, DeepLab,
and their variants are commonly used in state-of-the-art approaches. These models are
trained on large datasets with pixel-level annotations to learn to segment and classify
objects accurately.

The practical applications of semantic segmentation and instance segmentation span
across multiple domains. In medical imaging, semantic segmentation is used for organ
segmentation, tumor detection, and disease diagnosis. In autonomous driving, it aids in
detecting and segmenting pedestrians, vehicles, and traffic signs. In object detection
and recognition, these techniques provide valuable information for identifying and
understanding the spatial extent of objects. Furthermore, video analysis benefits from
semantic and instance segmentation by enabling object tracking, activity recognition,
and behavior analysis.

Overall, semantic segmentation and instance segmentation are indispensable tools in
the field of computer vision. They allow for fine-grained segmentation and object-level
recognition, enhancing the understanding and analysis of image content. Through the
application of advanced algorithms and deep learning models, these techniques enable
a wide range of applications in various fields, driving advancements in perception
systems, intelligent automation, and visual understanding.

Feature Detection and Extraction:
Feature detection and extraction play a crucial role in computer vision as they involve
identifying and describing key visual patterns or characteristics within an image. These
distinctive features serve as fundamental building blocks for a wide range of computer
vision applications, including object recognition, tracking, image registration, and more.

The process of feature detection begins with analyzing the image to identify points or
regions that possess unique properties. These properties can be based on variations in
color, intensity, texture, shape, or other visual attributes. Feature extraction follows the
detection phase and involves quantifying and describing the identified features in a
meaningful and compact manner.



There are various techniques and algorithms used for feature detection and extraction.
One popular approach is the use of local feature detectors, such as the Scale-Invariant
Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and Oriented FAST
and Rotated BRIEF (ORB). These methods aim to identify and extract features that are
invariant to changes in scale, rotation, and illumination.

Once the features are detected and extracted, they can be utilized in numerous
computer vision applications. Object recognition involves matching the extracted
features with a database of known objects or patterns, enabling the system to identify
and categorize objects within an image or video stream. Feature tracking focuses on
following the movement of specific features over time, allowing for tasks such as motion
analysis, video stabilization, or object tracking. Image registration employs
feature-based techniques to align multiple images or map different image modalities to
facilitate comparisons or create composite images.

Feature detection and extraction algorithms need to be robust to variations in lighting
conditions, noise, occlusions, and viewpoint changes to ensure reliable and accurate
results. Ongoing research focuses on developing more advanced feature detection and
extraction techniques that can handle complex scenes, scale to large datasets, and
exhibit improved efficiency and accuracy.

Overall, feature detection and extraction are fundamental steps in computer vision,
enabling machines to understand and interpret visual information. By capturing and
characterizing distinctive image features, computer vision systems can achieve tasks
ranging from object recognition and tracking to image registration and beyond. As
technology progresses, these techniques will continue to evolve, enabling more
sophisticated and accurate computer vision applications in diverse fields such as
robotics, healthcare, surveillance, and augmented reality.

Feature Detection Techniques
Feature detection techniques are fundamental in computer vision as they enable the
identification and localization of key points or regions of interest within an image. These
techniques play a vital role in various computer vision applications by providing
essential information about specific areas that are relevant to the task at hand.

One widely used feature detection technique is the Harris corner detector. It operates on
the principle that corner regions exhibit significant variations in intensity compared to
regions with straight edges. The algorithm analyzes the image to assess how the
intensity changes in all directions around each pixel. By detecting locations where



intensity changes occur in two directions, the Harris corner detector identifies potential
corner points.

Another notable technique is the Shi-Tomasi corner detector, which is an improvement
over the Harris corner detector. The Shi-Tomasi algorithm considers a pixel
neighborhood around each candidate corner point and selects the points with the
smallest eigenvalues. These points indicate the highest contrast in the surrounding
pixels, resulting in more reliable corner detection.

In addition to corner detection, the Canny edge detector is widely employed for
detecting edges within an image. The Canny algorithm involves several stages,
including image blurring to reduce noise, calculation of intensity gradients to identify
potential edge locations, suppression of non-maximum edges to refine the detected
edges, and hysteresis thresholding to eliminate weak and spurious edges.

Feature detection techniques are pivotal in identifying and localizing regions that
possess specific characteristics relevant to the task at hand. By accurately detecting
keypoints, computer vision systems can facilitate various applications, such as object
recognition, image stitching, augmented reality, and image alignment. These techniques
are essential for extracting meaningful information from digital images and enabling
machines to perceive and understand visual data.

Understanding and mastering feature detection techniques are crucial for effectively
analyzing digital images in diverse computer vision applications. Ongoing research
focuses on developing advanced algorithms that are robust to noise, scale, and lighting
variations, enabling more accurate and reliable feature detection in complex real-world
scenarios. Continued advancements in feature detection techniques will contribute to
the progress of computer vision, powering a wide range of applications across
industries, including robotics, autonomous systems, medical imaging, and more.

EXAMPLE CODE

One commonly used technique for feature detection is the Harris corner detector,
which identifies corners as regions of high variation in intensity in two directions. The
Harris corner detection algorithm can be implemented in Python using the following

code:



def harris_corner_detection(image, k=0.04, threshold=0.1,

window_size=3):

dx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)

dy = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)

dx2 = dx ** 2

dy2 = dy ** 2

dxdy = dx * dy

corner_response = ((cv2.filter2D(dx2, -1, np.ones((window_size,

window_size)))) * (cv2.filter2D(dy2, -1, np.ones((window_size,

window_size)))) - ((cv2.filter2D(dxdy, -1, np.ones((window_size,

window_size)))) ** 2) - k * ((cv2.filter2D(dx2, -1,

np.ones((window_size, window_size)))) + (cv2.filter2D(dy2, -1,

np.ones((window_size, window_size))))) ** 2

corners = []

for i in range(window_size, image.shape[0]-window_size):

for j in range(window_size, image.shape[1]-window_size):

if corner_response[i, j] > threshold *

corner_response.max():

corners.append((i, j))

return corners

Here, the Sobel operator is used to compute the first-order derivatives of the image in
the x and y directions. These derivatives are then used to compute the elements of the
Harris matrix, which is used to determine the corner response. The corners are then

identified as points with a corner response above a certain threshold.

Feature Extraction Techniques
Feature extraction techniques are crucial in computer vision as they enable the
representation and description of keypoints identified through feature detection. The
objective of feature extraction is to create robust representations of keypoints that are
invariant to changes in scale, rotation, and illumination, facilitating reliable matching and
recognition of features across different images.

Among the popular feature extraction techniques, the Scale-Invariant Feature Transform
(SIFT) stands out. SIFT identifies keypoints at multiple scales and describes each



keypoint by constructing a histogram of local gradient orientations. These descriptors
are immune to variations in scale, rotation, and affine distortions, making them highly
effective for matching and recognizing features in diverse images.

Another widely used technique is the Speeded Up Robust Feature (SURF), which is a
variant of SIFT. SURF employs integral images to efficiently compute scale-invariant
descriptors. Compared to SIFT, SURF offers faster processing while maintaining
robustness against viewpoint changes and variations in lighting conditions.

Oriented FAST and Rotated BRIEF (ORB) is another notable feature extraction
technique designed for real-time applications. ORB combines the FAST corner detector
and the BRIEF descriptor to achieve fast and efficient performance while retaining
robustness to noise and rotation changes.

By employing feature extraction techniques, computer vision systems can effectively
describe keypoints and generate feature descriptors that capture the distinctive
characteristics of each keypoint. These descriptors serve as compact representations of
keypoints, enabling efficient matching, recognition, and tracking of objects and scenes
in various applications, including image retrieval, augmented reality, and robotics.

Continued research in feature extraction focuses on developing advanced techniques
that are more robust to challenging conditions, such as occlusions, viewpoint changes,
and illumination variations. Improving the efficiency and discriminative power of feature
descriptors contributes to the advancement of computer vision applications, enabling
machines to accurately perceive and interpret visual information in real-world scenarios.

EXAMPLE CODE

One commonly used technique for feature extraction is the Scale-Invariant Feature
Transform (SIFT), which extracts distinctive features based on their scale and

orientation. The SIFT algorithm can be implemented in Python using the following code:

import cv2

image = cv2.imread('image.jpg')



gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

sift = cv2.xfeatures2d.SIFT_create()

keypoints, descriptors = sift.detectAndCompute(gray, None)

image_with_keypoints = cv2.drawKeypoints(image, keypoints, None)

cv2.imshow('Image with keypoints', image_with_keypoints)

cv2.waitKey(0)

cv2.destroyAllWindows()

Here, the SIFT detector is first created using the cv2.xfeatures2d.SIFT_create()
function. The detectAndCompute() function is then used to detect the keypoints and

extract their descriptors. Finally, the keypoints are visualized on the original image using
the drawKeypoints() function.


