
Lesson 12: Approximation Algorithms and
Inapproximability

Approximation Algorithms
Approximation algorithms are algorithms designed to find near-optimal solutions for
optimization problems when finding the exact optimal solution is computationally
infeasible or time-consuming. These algorithms provide efficient and practical solutions
by striking a balance between accuracy and efficiency. The analysis of approximation
algorithms focuses on understanding the performance guarantees and bounds of these
algorithms, ensuring that the obtained solutions are close to the optimal solutions.

Approximation algorithms are used to solve optimization problems, where the goal is to
find the best possible solution from a set of feasible solutions. In many cases, finding
the exact optimal solution to these problems is NP-hard, meaning it would require an
impractical amount of time or resources. Approximation algorithms come into play by
providing efficient algorithms that can find solutions that are close to optimal, though not
necessarily exact.

The quality of an approximation algorithm is measured using an approximation ratio,
denoted by the symbol "α." An approximation algorithm guarantees an α-approximation
if, for any instance of the problem, the solution it finds is within a factor of α times the
optimal solution. For example, if the approximation ratio is α=2, it means that the
algorithm finds a solution that is at most twice as bad as the optimal solution.

Analysis of Approximation Algorithms:
The analysis of approximation algorithms involves studying the performance guarantees
and bounds of these algorithms. The goal is to understand how well the approximation
algorithm performs in terms of the approximation ratio and to derive theoretical
guarantees for the quality of the obtained solutions.

There are different techniques used in the analysis of approximation algorithms:

- Worst-Case Analysis: This technique evaluates the performance of an approximation
algorithm based on the worst possible input instances. The analysis aims to provide an



upper bound on the approximation ratio, ensuring that the algorithm's performance does
not degrade significantly for any input.

- Average-Case Analysis: In contrast to worst-case analysis, average-case analysis
considers the performance of an algorithm on a distribution of input instances. It takes
into account the probability distribution of inputs and provides insights into the expected
approximation ratio.

- Probabilistic Analysis: Some approximation algorithms use randomized techniques or
make probabilistic choices during their execution. Probabilistic analysis focuses on
understanding the average behavior and performance guarantees of these algorithms
based on probability theory.

- Performance Bounds: The analysis of approximation algorithms aims to derive
performance bounds that provide guarantees on the quality of the obtained solutions.
These bounds may be in terms of approximation ratios, running time, or other relevant
metrics.

The analysis of approximation algorithms is crucial for evaluating their effectiveness and
practicality. It allows us to assess the trade-off between the quality of the obtained
solutions and the computational resources required by the algorithm. Theoretical
guarantees ensure that even though the obtained solutions may not be optimal, they are
still sufficiently close to the optimal solutions, making them useful in practice.

Examples of Approximation Algorithms:
Approximation algorithms have been developed for a wide range of optimization

problems. Some well-known examples include:

- Vertex Cover: Given an undirected graph, the goal is to find the smallest set of vertices
that covers all the edges. An approximation algorithm guarantees a solution with a
certain approximation ratio, such as α=2.

- Traveling Salesman Problem (TSP): In TSP, the objective is to find the shortest
possible tour that visits a set of cities and returns to the starting city. Various
approximation algorithms provide solutions with approximation ratios, such as α=2 or
α=3/2.

- Knapsack Problem: The knapsack problem involves selecting items with certain values
and weights to maximize the total value within a weight constraint. Approximation



algorithms provide solutions that are within a factor of α from the optimal solution, where
α depends on the problem constraints.

These are just a few examples of the many optimization problems for which
approximation algorithms have been developed. The analysis of these algorithms
ensures that the solutions they provide are sufficiently close to the optimal solutions,
making them valuable tools for solving complex optimization problems efficiently.

In conclusion, approximation algorithms provide near-optimal solutions for optimization
problems when finding the exact optimal solution is impractical. The analysis of these
algorithms focuses on understanding their performance guarantees, such as the
approximation ratio, to ensure that the obtained solutions are of high quality. Various
techniques, including worst-case analysis, average-case analysis, and probabilistic
analysis, are used to derive performance bounds and assess the trade-off between
accuracy and efficiency. The analysis of approximation algorithms is essential for
evaluating their effectiveness and practicality in solving a wide range of optimization
problems.

Inapproximability and the PCP Theorem
Inapproximability is a field of study within theoretical computer science that deals with
understanding the limits of approximation algorithms for optimization problems. It
focuses on proving the impossibility of finding efficient approximation algorithms that
achieve certain levels of accuracy for specific problems. The PCP (Probabilistically
Checkable Proofs) theorem is a landmark result in inapproximability theory that provides
strong evidence for the hardness of approximating certain NP-hard problems.

Inapproximability theory explores the inherent difficulty of approximating optimization
problems. It seeks to establish the existence of computational barriers that prevent the
development of efficient approximation algorithms achieving optimal or near-optimal
solutions. Inapproximability results typically focus on proving hardness of approximation
for specific problems, showing that no efficient algorithm can achieve a certain
approximation ratio unless P = NP.

To prove inapproximability, researchers often employ techniques such as reductions,
which involve transforming one problem into another to show that if an efficient
approximation algorithm exists for the target problem, then it would imply an efficient
algorithm for a known hard problem. These results help define the limits of efficient



approximation algorithms and provide insights into the complexity of optimization
problems.

The PCP Theorem:
The PCP theorem, formulated by Arora and Safra in the mid-1990s, is a central result in
inapproximability theory that establishes the existence of highly efficient probabilistically
checkable proofs for certain NP-hard problems. The theorem demonstrates that the
verification of solutions can be performed by reading only a constant number of bits
from the proof, while still guaranteeing high confidence in the correctness of the
solution.

The PCP theorem has significant implications for inapproximability. It shows that if a
problem is hard to approximate within certain bounds, then it implies the existence of
highly efficient verification procedures for the problem's solutions. The theorem
connects the complexity of optimization problems to the complexity of proof verification,
highlighting the inherent hardness of these problems.

The PCP theorem also provides a powerful tool for establishing hardness of
approximation results. By utilizing the PCP theorem and related techniques,
researchers have been able to prove that certain problems are inapproximable within
certain approximation ratios, providing strong evidence for the infeasibility of finding
efficient approximation algorithms for these problems.

Applications and Significance:
Inapproximability and the PCP theorem have profound implications in various areas of
computer science and mathematics:

- Complexity Theory: Inapproximability results contribute to complexity theory by
shedding light on the inherent complexity of optimization problems. They help classify
problems into complexity classes and understand the boundary between tractable and
intractable problems.

- Hardness of Approximation: The PCP theorem and inapproximability results establish
the hardness of approximating various NP-hard problems, even within certain
approximation ratios. These results have practical implications in fields such as
operations research, scheduling, resource allocation, and network optimization, where
finding near-optimal solutions is crucial.



- Cryptography: Inapproximability results are essential for cryptographic constructions,
such as the construction of secure encryption schemes and cryptographic protocols.
They provide a foundation for building cryptographic systems that are resistant to
attacks based on finding efficient approximations.

- Algorithm Design: Inapproximability results guide algorithm designers in understanding
the limitations of approximation algorithms. They help identify problems where finding
efficient approximations is unlikely, prompting the exploration of alternative solution
methods or the consideration of approximation guarantees with relaxed bounds.

In summary, inapproximability theory focuses on understanding the limits of
approximation algorithms for optimization problems. The PCP theorem, a significant
result in this field, provides evidence for the hardness of approximating certain NP-hard
problems and establishes the existence of highly efficient probabilistically checkable
proofs. Inapproximability results have applications in complexity theory, cryptography,
algorithm design, and various fields requiring optimization and approximation solutions.
They provide crucial insights into the inherent difficulty of approximation and guide
researchers in understanding the complexity of computational problems.

Hardness of approximation results
Hardness of approximation results play a vital role in understanding the inherent
computational complexity of approximating optimization problems. These results
provide mathematical evidence that finding efficient algorithms capable of providing
near-optimal solutions for these problems is computationally challenging. Theorems in
this area establish that achieving a certain level of accuracy in the approximation is
NP-hard, indicating that unless P = NP, there is no polynomial-time algorithm capable of
producing a solution within the specified bounds.

Hardness of approximation results have profound implications for various fields,
including theoretical computer science, algorithm design, and real-world applications.
They help delineate the boundaries of computational feasibility and provide valuable
insights into the complexity of optimization problems. Here are some notable hardness
of approximation results:

1. PCP Theorem:



The Probabilistically Checkable Proofs (PCP) theorem is a landmark result in hardness
of approximation. It demonstrates that certain optimization problems are hard to
approximate within specific bounds. The PCP theorem establishes the existence of
highly efficient probabilistically checkable proofs, which allows verification of solutions
by reading only a constant number of bits from the proof. This theorem provides strong
evidence for the hardness of approximating certain NP-hard problems.

2. Unique Games Conjecture:
The Unique Games Conjecture is a significant hypothesis in computational complexity
theory. It states that approximating the maximum value of a unique games problem to
within a certain constant factor is NP-hard. The conjecture has connections to several
other hardness of approximation results and has been instrumental in establishing
inapproximability bounds for various problems.

3. Inapproximability of Vertex Cover:
The Vertex Cover problem involves finding the smallest set of vertices that covers all the
edges in a graph. Hardness of approximation results for Vertex Cover demonstrate that
it is not possible to find a polynomial-time approximation algorithm with an
approximation ratio better than O(log n), where n is the number of vertices in the graph,
unless P = NP.

4. Inapproximability of Set Cover:
The Set Cover problem requires selecting a minimum number of sets from a collection
such that their union covers all the elements. Hardness of approximation results for Set
Cover establish that it is not possible to find a polynomial-time approximation algorithm
with an approximation ratio better than ln(n), where n is the number of elements, unless
P = NP.

5. Inapproximability of Traveling Salesman Problem (TSP):
The Traveling Salesman Problem seeks to find the shortest possible tour that visits
each city exactly once and returns to the starting city. Hardness of approximation results
for TSP demonstrate that it is not possible to approximate the problem within a factor
better than 3/2, unless P = NP.

These examples highlight the breadth of hardness of approximation results for various
optimization problems. Researchers have studied and established inapproximability
bounds for many other problems as well. Hardness of approximation results provide
valuable insights into the computational difficulty of approximating optimization
problems, guiding algorithm design choices and informing the development of efficient
approximation algorithms. Understanding the limits of approximation assists in



identifying the trade-offs between computational resources and solution quality, paving
the way for practical solutions in real-world applications.


