
Lesson 10: Reductions and NP-Hardness

Polynomial-time Reductions
Reductions are a fundamental concept in computer science and mathematics,
specifically in the field of computational complexity theory. They are used to analyze the
relative difficulty or hardness of solving one problem in terms of solving another
problem.

In general, a reduction is a way to transform an instance of one problem into an
instance of another problem in such a way that a solution to the second problem can be
used to solve the first problem. The idea is to show that if we can efficiently solve the
second problem, then we can also efficiently solve the first problem.

Reductions are typically represented by functions that map instances of one problem to
instances of another problem. These functions are often referred to as reduction
functions or reduction algorithms. The reduction function takes an input for the first
problem and produces an input for the second problem. The transformation should
preserve the answer to the problem, meaning that if the first problem has a "yes"
answer, then the transformed instance of the second problem should also have a "yes"
answer, and vice versa.

There are different types of reductions, but two commonly used ones are
polynomial-time reductions and many-one reductions.

Polynomial-time reductions: A polynomial-time reduction is a reduction that can be
performed in polynomial time. It means that the reduction function runs in polynomial
time with respect to the size of the input. Polynomial-time reductions are often used to
compare the computational complexity of problems in the class of problems known as
NP (nondeterministic polynomial time).

Many-one reductions: Many-one reductions, also known as Karp reductions, are a
specific type of polynomial-time reduction. In a many-one reduction, the reduction
function maps instances of one problem to instances of another problem such that the
transformed instance has the same answer as the original instance. Many-one
reductions are frequently used to show the NP-completeness of problems.

Reductions play a crucial role in computational complexity theory, particularly in the
study of NP-completeness and the classification of computational problems according to



their inherent difficulty. By showing that a problem is reducible to a known hard problem,
we can establish its complexity and understand its place within the hierarchy of
computational problems.

Transformation of one problem into another
Transformation of one problem into another, through reductions, is a fundamental
concept in computer science and mathematics. It enables us to establish relationships
between different problems, analyze their computational properties, and gain insights
into their complexity.

The process of transforming one problem into another involves using a reduction
function or algorithm. This function takes an instance or input of the first problem as its
input and produces an instance or input of the second problem as its output. The
reduction function must adhere to certain properties to ensure that the transformed
instance preserves the answer to the original problem.

There are several types of reductions, each imposing different restrictions on the
reduction function. Let's delve into some of the common types:

Many-one Reduction: A many-one reduction, also known as a Karp reduction, is a
type of reduction in which the reduction function maps instances of the first problem to
instances of the second problem. Crucially, the transformed instance should have the
same answer as the original instance. Many-one reductions are often used to
demonstrate the NP-completeness of problems. By showing that a problem can be
transformed into an NP-complete problem through a many-one reduction, we establish
that the problem is at least as difficult as NP-complete problems.

Polynomial-time Reduction: A polynomial-time reduction is a reduction that can be
computed in polynomial time. This means that the reduction function runs in polynomial
time relative to the size of the input. Polynomial-time reductions are frequently
employed to compare the computational complexity of problems within the class of
problems known as NP. If we can efficiently transform instances of problem A to
instances of problem B using a polynomial-time reduction, and we can efficiently solve
problem B, then problem A is considered "no harder" than problem B in terms of
complexity.

Turing Reduction: A Turing reduction is a more general type of reduction that uses an
oracle for solving the second problem as a subroutine. The reduction function can make
queries to the oracle to solve instances of the second problem while reducing instances
of the first problem to the second problem. Turing reductions are particularly useful for



analyzing undecidable problems and establishing degrees of unsolvability. By
demonstrating that a problem is Turing reducible to another problem, we show that the
first problem is at least as difficult as the second problem.

The choice of reduction type depends on the context and the specific properties being
analyzed. Many-one reductions are commonly used for establishing computational
complexity relationships, especially when proving NP-completeness. Polynomial-time
reductions are particularly useful for comparing problems within the class of NP, while
Turing reductions offer a broader perspective on undecidability.

Preserving computational difficulty
Preserving the computational difficulty is a fundamental aspect of reductions. It ensures
that the transformed instance of the second problem retains the same level of
complexity as the original instance of the first problem. Essentially, if the first problem is
difficult to solve, the reduction guarantees that the second problem remains equally
challenging.

To maintain computational difficulty, the reduction function must adhere to
specific properties:

1. Correctness: The reduction function accurately converts the original instance of the
first problem into a valid instance of the second problem while preserving the answer. If
the first problem has a "yes" answer, the transformed instance should also yield a "yes"
answer, and vice versa. This property ensures that the reduction does not alter the
problem's solution.

2. Completeness: The reduction function covers the entire range of valid instances of
the first problem, ensuring that every input is appropriately transformed into a valid
instance of the second problem. No instances are left unaccounted for, ensuring the
reduction encompasses the entire problem space.

3. Efficiency: The reduction function operates with efficiency, ensuring it runs in a
reasonable amount of time relative to the input size. If the transformation process takes
an excessive amount of time, it defeats the purpose of comparing the computational
difficulty of problems.

By satisfying these properties, the reduction guarantees that the transformed problem is
at least as difficult as the original problem in terms of computational complexity.



Consequently, we can draw conclusions about the difficulty of one problem based on
the known complexity of another problem.

For example, when establishing NP-completeness, many-one reductions are often
employed to demonstrate that problem A can be transformed into a known NP-complete
problem B. By showcasing that the reduction successfully preserves computational
difficulty, we can deduce that problem A is also NP-complete.

Preserving computational difficulty through reductions is pivotal for problem
classification, comprehending their inherent complexity, and determining their position
within the hierarchy of computational problems. It provides a framework for evaluating
and analyzing the relative challenges posed by different problems, playing a
foundational role in fields such as computational complexity theory and algorithmic
design.

Polynomial-time reducibility
Polynomial-time reducibility, also known as polynomial-time mapping reduction, is a type
of reduction that focuses on transformations that can be computed in polynomial time.
In this type of reduction, the reduction function must be efficient and run within a
polynomial time bound with respect to the size of the input.

Polynomial-time reductions are frequently used to compare the computational
complexity of problems within the class of problems known as NP (nondeterministic
polynomial time). If we can efficiently transform instances of problem A to instances of
problem B using a polynomial-time reduction, and we can efficiently solve problem B,
then problem A is considered "no harder" than problem B in terms of complexity.

The Subset Sum Problem to the Knapsack Problem:
The Subset Sum Problem asks whether, given a set of integers and a target sum,

there is a subset of the integers that adds up to the target sum. The Knapsack Problem
involves determining the most valuable combination of items to fit into a knapsack with a
given weight limit. By constructing a reduction that transforms an instance of the Subset
Sum Problem into an instance of the Knapsack Problem, we can demonstrate that if we
can efficiently solve the Knapsack Problem, we can also efficiently solve the Subset
Sum Problem.



The Vertex Cover Problem to the Clique Problem:
The Vertex Cover Problem involves finding the smallest set of vertices in a graph that

covers all the edges. The Clique Problem asks whether there is a complete subgraph of
a certain size within a given graph. By using a reduction that converts an instance of the
Vertex Cover Problem into an instance of the Clique Problem, we can show that if we
can efficiently solve the Clique Problem, we can also efficiently solve the Vertex Cover
Problem.

The Boolean Satisfiability Problem (SAT) to the 3-SAT Problem:
The Boolean Satisfiability Problem involves determining if there is an assignment of

truth values to variables in a Boolean formula that satisfies the formula. The 3-SAT
Problem is a specific case where the formula is in conjunctive normal form (CNF), and
each clause has exactly three literals. By employing a reduction that converts an
instance of the Boolean Satisfiability Problem into an instance of the 3-SAT Problem, we
establish that if we can efficiently solve 3-SAT, we can also efficiently solve the more
general SAT problem.

These examples demonstrate how polynomial-time reductions allow us to relate the
computational complexity of different problems. By efficiently transforming instances
from one problem to another, we can gain insights into the relative difficulty and
solvability of these problems within the class of NP. Polynomial-time reductions serve as
a powerful tool in understanding the hierarchy and relationships between computational
problems.

NP-Hardness
NP-hardness is a concept used to describe the computational difficulty of a problem in
the context of complexity theory. A problem is considered NP-hard if every problem in
the class NP (nondeterministic polynomial time) can be reduced to it in polynomial time.
In other words, an NP-hard problem is at least as difficult as the hardest problems in NP.

To formally define NP-hardness, we need to introduce the concept of polynomial-time
reductions. A problem A is said to be polynomial-time reducible (or simply reducible) to
problem B if there exists a polynomial-time algorithm that can transform any instance of
problem A into an equivalent instance of problem B. This reduction establishes a
relationship between the two problems, allowing solutions for problem B to be used to
solve problem A efficiently.



Now, a problem C is defined as NP-hard if every problem in NP can be polynomial-time
reduced to C. In other words, given any problem in NP, there exists a polynomial-time
reduction that transforms its instances into instances of problem C. This implies that if
we can solve problem C efficiently, we can solve all problems in NP efficiently as well.

It is important to note that NP-hardness is a concept that applies to decision problems,
which have a "yes" or "no" answer. For optimization problems, which seek to find the
best solution among many possible solutions, the corresponding concept is called
NP-completeness. An NP-complete problem is both NP-hard and in NP.

The significance of NP-hardness lies in its implications for computational complexity. If a
problem is NP-hard, it suggests that finding an efficient algorithm to solve it is unlikely,
unless P (the class of problems that can be solved in polynomial time) is equal to NP.
NP-hard problems serve as benchmarks for studying the limits of efficient computation
and are central to classifying and understanding the complexity of computational
problems.



Relationship between NP-Hard and NP-Complete
problems
The relationship between NP-hard and NP-complete problems is a fundamental concept
in computational complexity theory. To understand this relationship, we need to define
both terms and explore how they relate to each other.

1. NP-hard problems: An NP-hard problem is one that is at least as difficult as the
hardest problems in the class NP (nondeterministic polynomial time). Specifically, a
problem is NP-hard if every problem in NP can be polynomial-time reduced to it. In
other words, if we can efficiently solve an NP-hard problem, we can efficiently solve any
problem in NP. NP-hardness is a measure of computational difficulty and does not
require a problem to be in NP.

2. NP-complete problems: An NP-complete problem is a special subset of NP-hard
problems that has two properties: (a) it is in NP, meaning that a proposed solution can
be verified in polynomial time, and (b) it is NP-hard, meaning that every problem in NP
can be polynomial-time reduced to it. In other words, an NP-complete problem is the
hardest problem in NP with respect to polynomial-time reductions.

The relationship between NP-hard and NP-complete problems can be summarized
as follows:

- All NP-complete problems are NP-hard: Since an NP-complete problem is defined
as both being in NP and being NP-hard, it follows that any problem that is NP-complete
is also NP-hard. This is because an NP-complete problem is at least as difficult as the
hardest problems in NP, and by definition, NP-hard problems encompass all such
difficult problems.

- Not all NP-hard problems are NP-complete: There exist NP-hard problems that are
not in NP. These problems are indeed computationally difficult but lack the property of
being in NP and hence cannot be considered NP-complete. NP-complete problems
represent the intersection of NP and NP-hardness.

- Establishing NP-completeness: To prove that a problem is NP-complete, two criteria
must be met. First, the problem must be in NP, meaning that solutions can be verified in
polynomial time. Second, the problem must be NP-hard, indicating that every problem in
NP can be reduced to it in polynomial time. By meeting these criteria, a problem is
classified as NP-complete, representing the most challenging problems in NP.



NP-hard problems are a broader class that includes all problems at least as difficult as
those in NP, while NP-complete problems are a specific subset of NP-hard problems
that are both in NP and encompass the entire NP complexity class. NP-complete
problems serve as critical benchmarks in computational complexity theory, as their
study provides insights into the inherent difficulty of a wide range of computational
problems.

Cook's theorem and the concept of completeness
Cook's theorem, also known as the Cook-Levin theorem, is a fundamental result in
computational complexity theory. It introduces the concept of completeness within the
class of problems known as NP (nondeterministic polynomial time). The theorem
specifically states that the Boolean satisfiability problem (SAT) is NP-complete.

Completeness, in the context of NP-complete problems, refers to a problem that is both
in NP and as hard as the hardest problems in NP. In other words, an NP-complete
problem possesses two crucial properties. First, it is in NP, meaning that a proposed
solution can be verified efficiently in polynomial time. Second, it is NP-hard, indicating
that every problem in NP can be transformed into an instance of the NP-complete
problem using a polynomial-time reduction.

Cook's theorem establishes SAT as the first NP-complete problem. SAT is the problem
of determining whether a given Boolean formula can be made true by assigning
appropriate truth values to its variables. By showing that SAT satisfies both criteria of
NP-completeness, Cook's theorem serves as a cornerstone in computational complexity
theory.

The significance of Cook's theorem lies in its implications:

First, it allows for the classification of computational problems. By demonstrating that
SAT is NP-complete, Cook's theorem provides a starting point for understanding the
complexity of other problems. If a problem can be reduced to SAT through a
polynomial-time reduction, it inherits the NP-completeness of SAT. This allows for the
comparison and analysis of the relative difficulty of different problems within NP.



Second, Cook's theorem highlights the power of polynomial-time reductions and
transformations. The ability to reduce problems to SAT and establish their
computational complexity opens avenues for studying their relationships to other
NP-complete problems. Reductions provide a means to understand the structure and
complexity of problems by mapping them to known benchmarks.

Third, Cook's theorem establishes hardness amplification within NP-complete problems.
If we can efficiently solve any NP-complete problem, such as SAT, we can solve all
problems in NP by reducing them to the NP-complete problem and utilizing the solver.
This property demonstrates the inherent difficulty and robustness of NP-complete
problems, making them vital in proving the hardness of various computational tasks.

Cook's theorem and the concept of completeness play a fundamental role in
computational complexity theory. By identifying SAT as the first NP-complete problem,
Cook's theorem enables the classification of problems and aids in understanding the
limits of efficient computation within NP. It provides a framework for studying complexity,
reductions, and the relationships between different computational problems.

Approximation Algorithms and Hardness of Approximation
Approximation algorithms are a powerful tool in computer science and optimization that
offer efficient and practical solutions to computationally challenging problems. These
algorithms provide approximate solutions that are close to the optimal solution, while
guaranteeing a certain level of quality or approximation ratio.

In many real-world scenarios, finding the exact optimal solution to a problem is
computationally infeasible due to its high complexity. This is where approximation
algorithms come into play. They aim to find a reasonably good solution within a
reasonable amount of time, even if it may not be the absolute best solution.

The main goal of an approximation algorithm is to strike a balance between efficiency
and solution quality. It makes a trade-off by sacrificing optimality for computational
tractability. The algorithm focuses on finding a solution that is "close enough" to the
optimal solution, usually within a certain factor or percentage.

The performance of an approximation algorithm is typically evaluated based on its
approximation ratio, which quantifies how close the algorithm's solution is to the optimal



solution. A smaller approximation ratio indicates a better approximation quality. Ideally,
an approximation algorithm should have a small approximation ratio while running
efficiently in polynomial time.

Approximation algorithms are widely used in various fields, including operations
research, scheduling, network design, facility location, and resource allocation, among
others. They provide practical solutions that are often acceptable in real-world scenarios
where finding the exact optimal solution is not feasible.

It is important to note that the effectiveness of an approximation algorithm depends on
the specific problem being solved. Some problems have well-established approximation
algorithms with provable guarantees, while for others, approximation algorithms are still
an active area of research.

Trade-off between accuracy and efficiency
The trade-off between accuracy and efficiency is a common consideration in many
areas of computing, particularly when solving complex problems or making decisions
based on limited resources. This trade-off involves finding the right balance between
achieving a high level of accuracy or precision in a solution and using computational
resources efficiently.

Accuracy refers to the degree of correctness or closeness to the true or optimal
solution. It often involves minimizing errors, maximizing precision, or achieving desired
objectives with a high level of fidelity. On the other hand, efficiency pertains to how
effectively and quickly a solution can be obtained within resource constraints such as
time, memory, or computational power.

In many cases, improving accuracy comes at the cost of increased computational
complexity. The pursuit of absolute accuracy or optimality may require exhaustive
search, intricate algorithms, or extensive computational resources, which can result in
long processing times or infeasible computational requirements. Conversely, prioritizing
efficiency may involve sacrificing some level of accuracy to achieve faster or more
resource-friendly solutions.

The specific trade-off between accuracy and efficiency depends on the problem
domain, the available resources, and the requirements of the application. Here

are a few examples:



1. Approximation algorithms: As discussed earlier, approximation algorithms strike a
trade-off between accuracy and efficiency. They provide solutions that are close to the
optimal solution while running in polynomial time. By sacrificing optimality, these
algorithms offer efficient and practical solutions to computationally challenging
problems.

2. Sampling and statistical estimation: In large-scale data analysis or statistical
inference, it is often impractical to process or analyze the entire dataset. Instead,
techniques like sampling or statistical estimation are employed to extract meaningful
information from a subset of the data. While this reduces computational complexity and
resource requirements, it introduces a certain level of uncertainty or approximation in
the analysis results.

3. Heuristics: Heuristics are problem-solving techniques that aim to find good solutions
quickly, often without guaranteeing optimality. These methods employ rules of thumb,
domain-specific knowledge, or simplified algorithms to guide the search for a solution.
While heuristics can provide efficient results, they may not always yield the most
accurate or globally optimal solutions.

Ultimately, the choice between accuracy and efficiency depends on the specific
requirements and constraints of the problem at hand. Sometimes, achieving the highest
level of accuracy is critical, while in other cases, obtaining a reasonably good solution
quickly and efficiently is more important. Striking the right balance is a matter of
understanding the trade-offs, considering the available resources, and making informed
decisions based on the specific problem context.

Approximation ratios and guarantees
Approximation ratios and guarantees are important measures in the analysis of
approximation algorithms. They provide quantitative assessments of the quality of the
solutions obtained by approximation algorithms compared to the optimal or ideal
solution.

An approximation ratio is a numerical value that indicates how close the solution
produced by an approximation algorithm is to the optimal solution. It is usually
expressed as a ratio or a percentage. A smaller approximation ratio signifies a better
quality approximation, indicating that the algorithm's solution is closer to the optimal
solution.



The approximation ratio is defined as the maximum possible ratio between the cost or
value of the approximation algorithm's solution and the cost or value of the optimal
solution. It represents an upper bound on how much worse the approximation
algorithm's solution can be compared to the optimal solution. For minimization
problems, the approximation ratio should be less than or equal to 1, while for
maximization problems, it should be greater than or equal to 1.

To provide guarantees on the quality of the approximation, approximation algorithms are
often accompanied by proofs that establish an upper bound on the approximation ratio.
These guarantees ensure that the solutions produced by the approximation algorithm
are within a certain factor of the optimal solution.

For example, an approximation algorithm may come with a guarantee that its solution is
within a factor of 2 of the optimal solution. This means that the cost or value of the
approximation algorithm's solution is at most twice the cost or value of the optimal
solution. Similarly, a guarantee of a factor of 1.5 would indicate that the approximation
algorithm's solution is at most 1.5 times worse than the optimal solution.

These approximation ratios and guarantees are crucial for assessing the performance
of approximation algorithms. They provide quantitative bounds on the quality of the
solutions obtained, allowing users to make informed decisions about the trade-off
between solution quality and computational efficiency. Approximation algorithms with
smaller approximation ratios or better guarantees are generally preferred since they
provide solutions closer to optimality.

It's important to note that the existence of approximation guarantees doesn't guarantee
that the algorithm will always achieve the best approximation possible. However, they
do provide valuable insights into the quality of the solutions and allow for comparisons
between different approximation algorithms for the same problem.

Hardness of approximation
The hardness of approximation is a concept that deals with the computational
complexity of finding approximations to optimization problems. It focuses on determining
the limits of efficiently approximating the optimal solution for a given problem.

In some cases, finding the exact optimal solution to an optimization problem is
computationally infeasible or NP-hard. In such situations, researchers turn their
attention to approximation algorithms that provide solutions that are close to the optimal
solution. The hardness of approximation investigates the inherent difficulty of achieving



good approximations and determines the best possible approximation ratios for different
problems.

The concept of hardness of approximation is closely related to the class of problems
known as NP-hard. An optimization problem is considered NP-hard if it is at least as
difficult as the hardest problems in NP (nondeterministic polynomial time). Hardness of
approximation extends this concept to consider how well an optimization problem can
be approximated.

Specifically, the hardness of approximation is concerned with proving lower bounds on
the approximation ratios that can be achieved for certain problems. These lower bounds
establish limitations on how closely the optimal solution can be approximated within
polynomial time, assuming certain complexity-theoretic assumptions, such as the
inability to solve NP-complete problems in polynomial time.

The hardness of approximation is often characterized by a notion called the
"approximation hardness threshold." This threshold represents the best approximation
ratio that can be achieved for a given problem, assuming the widely believed
complexity-theoretic conjecture that P (the class of problems solvable in polynomial
time) is not equal to NP.

Determining the hardness of approximation for specific problems is an active area of
research in theoretical computer science. Researchers strive to establish the best
known approximation ratios and to prove lower bounds on the quality of approximations
that can be obtained. This analysis helps to understand the limits of approximation
algorithms and guides the development of efficient and effective approximation
techniques.

The hardness of approximation has profound implications in algorithm design,
optimization theory, and practical applications. It provides insights into the inherent
complexity of optimization problems and informs decision-making processes when
exact solutions are unattainable. By studying the hardness of approximation,
researchers aim to develop algorithms that strike a balance between computational
efficiency and the quality of approximations for a wide range of challenging problems.



Examples of approximation problems

1. Vertex Cover
The Vertex Cover problem is a classic optimization problem in graph theory. Given an
undirected graph, a vertex cover is a subset of vertices such that every edge in the
graph is incident to at least one vertex in the subset. The objective of the Vertex Cover
problem is to find the smallest possible vertex cover.

Vertex Cover is known to be NP-hard, meaning that there is no known algorithm that
can solve it optimally in polynomial time unless P = NP. As a result, researchers have
focused on developing approximation algorithms that provide solutions with small vertex
covers.

One well-known approximation algorithm for Vertex Cover is the greedy algorithm. It
starts with an empty vertex cover and iteratively selects vertices that cover the
maximum number of uncovered edges until all edges are covered. The greedy
algorithm guarantees a vertex cover that is at most twice the size of the optimal
solution, making it a 2-approximation algorithm for Vertex Cover.

2. Set Cover
The Set Cover problem is a fundamental combinatorial optimization problem. Given a
universe U and a collection of subsets S1, S2, ..., Sn of U, the objective is to find the
smallest possible subset of S that covers all elements in U. In other words, the selected
sets should contain all elements of U, and the goal is to minimize the number of
selected sets.

Set Cover is also NP-hard and has wide-ranging applications in various domains,
including resource allocation, scheduling, and logistics. Approximation algorithms for
Set Cover aim to find a set cover that is close to the optimal size.

One commonly used approximation algorithm for Set Cover is the greedy algorithm. It
iteratively selects the set that covers the maximum number of uncovered elements until
all elements are covered. The greedy algorithm guarantees a set cover that is at most
ln(n) times the size of the optimal solution, where n is the number of elements in the
universe. This makes it a ln(n)-approximation algorithm for Set Cover.



3. Maximum Cut
The Maximum Cut problem deals with partitioning the vertices of an undirected graph
into two sets, aiming to maximize the number of edges crossing between the two sets.
In other words, the goal is to divide the vertices into two groups such that the number of
edges connecting vertices from different groups is maximized.

Like the previous problems, Maximum Cut is NP-hard. Approximation algorithms for
Maximum Cut seek to find a cut that achieves a large fraction of the maximum possible
number of crossing edges.

The approximation algorithms for Maximum Cut vary depending on the characteristics
of the graph. One common approach is the randomized algorithm based on random
partitioning. It randomly assigns each vertex to one of the two sets and computes the
number of crossing edges. This process is repeated several times, and the best cut
found is returned as the approximate solution.

The performance of approximation algorithms for Maximum Cut is typically evaluated in
terms of the approximation ratio, which measures how close the number of crossing
edges in the approximation is to the maximum possible number of crossing edges. The
best-known approximation ratio for Maximum Cut is 0.878, achieved by the
Goemans-Williamson algorithm.

These examples highlight the challenges of solving optimization problems optimally and
the importance of developing approximation algorithms to find solutions that are close to
the optimal. By striking a balance between computational efficiency and solution quality,
approximation algorithms provide practical approaches to tackling computationally
difficult problems across various domains.


