
Lesson 6: Manipulating the DOM with JavaScript
The Document Object Model (DOM) is a programming interface that represents the
structure of HTML and XML documents as a tree-like structure. Each element in an
HTML document, such as headings, paragraphs, images, and buttons, is represented
as a node in the DOM tree. JavaScript provides powerful methods and properties to
manipulate the DOM, allowing you to dynamically update the content, structure, and
styles of web pages. In this section, we will explore how to use JavaScript to interact
with the DOM effectively.

Accessing Elements:
JavaScript provides methods to select and access elements in the DOM. These
methods allow you to target specific elements or groups of elements based on various
criteria:

getElementById: Retrieves an element by its unique ID attribute. This method returns a
single element that matches the specified ID.

var element = document.getElementById("myElement");

getElementsByClassName: Retrieves a collection of elements based on their class
name. This method returns an HTMLCollection or a NodeList of elements that have the
specified class.

var elements = document.getElementsByClassName("myClass");

getElementsByTagName: Retrieves a collection of elements based on their tag name.
This method returns an HTMLCollection or a NodeList of elements that have the
specified tag.

var elements = document.getElementsByTagName("div");

querySelector: Retrieves the first element that matches a specific CSS selector. This
method returns the first element that matches the specified selector.

var element = document.querySelector(".myClass");

Modifying Elements:
Once you have selected an element or a group of elements, JavaScript allows you to
modify their properties, content, and styles:

Changing Content: You can update the text or HTML content of an element using the
textContent or innerHTML properties, respectively. The textContent property sets or
returns the text content of an element, while the innerHTML property sets or returns the
HTML content.

element.textContent = "Hello, world!";

element.innerHTML = "Welcome to my website!";

Modifying Attributes: JavaScript provides methods to modify element attributes. You
can use the getAttribute method to retrieve the value of an attribute, the setAttribute
method to set the value of an attribute, and the removeAttribute method to remove an
attribute from an element.

var src = image.getAttribute("src");

link.setAttribute("href", "https://www.example.com");

button.removeAttribute("disabled");

Adjusting Styles: You can change the appearance of an element by modifying its CSS
styles using the style property. The style property allows you to access and modify
individual style properties, such as color, backgroundColor, fontSize, etc. You can
assign values to these properties to change the styling of an element.

element.style.color = "red";

element.style.backgroundColor = "yellow";

Creating and Appending Elements:
JavaScript enables you to create new elements dynamically and add them to the DOM:

Creating Elements: Use the createElement method to create a new HTML element.
You can specify the element type by passing the tag name as an argument to the

method. After creating the element, you can set its attributes and content using various
DOM methods.

var newElement = document.createElement("div");

newElement.setAttribute("id", "myNewElement");

newElement.textContent = "New Element";

Appending Elements: You can add the newly created element to the DOM by
appending it to an existing element using the appendChild or insertBefore method.
The appendChild method appends the new element as the last child of the parent
element, while the insertBefore method inserts the new element before a specified
reference element.

var container = document.getElementById("container");

container.appendChild(newElement);

Handling Events:
JavaScript allows you to respond to user interactions and create interactive web
functionality through event handling:

Event Listeners: Use the addEventListener method to attach event listeners to
elements. Event listeners allow you to define actions to be performed when a specific
event occurs, such as a mouse click, key press, or form submission.

element.addEventListener("click", function() {

// Perform actions when the element is clicked

});

Common Events: JavaScript provides access to a wide range of events that can be
listened to and responded to. These events include mouse events (click, mouseover,
mouseout), keyboard events (keydown, keyup), form events (submit, change), and
many more. You can attach event listeners to elements based on the desired
interaction.

element.addEventListener("mouseover", function() {

// Perform actions when the mouse is over the element

});

By manipulating the DOM with JavaScript, you can dynamically update web page
content, modify element attributes and styles, create new elements, and respond to
user interactions. This powerful capability allows you to build interactive and engaging
web applications that respond to user actions and provide a rich user experience.

