
Lesson 5: Javascript Control Flow and Functions

Control Flow
Control flow in JavaScript refers to the order in which statements and expressions are
executed in a program. It determines the path that the program takes based on certain
conditions and loops. Control flow allows you to make decisions, repeat actions, and
control the flow of execution.

In JavaScript, control flow is managed using control structures such as conditionals
(if...else statements, switch statements) and loops (for loops, while loops, do...while
loops). These control structures enable you to alter the flow of execution based on
specific conditions or repeatedly execute blocks of code.

Conditionals:
Conditionals allow you to execute different blocks of code based on specific conditions.

1. The most commonly used conditional statement is the if...else statement. It
evaluates a condition and executes a block of code if the condition is true, and an
alternative block of code if the condition is false. Here's an example:

let hour = 15;

let greeting;

if (hour < 12) {

greeting = "Good morning!";

} else if (hour < 18) {

greeting = "Good afternoon!";

} else {

greeting = "Good evening!";

}

console.log(greeting);



2. switch Statement: The switch statement is used to select one of many code
blocks to be executed based on the value of an expression. It provides a concise
way to handle multiple cases. Here's an example:

let day = 3;

let dayName;

switch (day) {

case 1:

dayName = "Monday";

break;

case 2:

dayName = "Tuesday";

break;

case 3:

dayName = "Wednesday";

break;

// ...

default:

dayName = "Unknown";

break;

}

console.log(dayName);

3. for Loop: The for loop allows you to repeatedly execute a block of code for a
specified number of times. It consists of an initialization, a condition, and an
iteration statement. Here's an example:

for (let i = 0; i < 5; i++) {

console.log(i);

}

4. while Loop: The while loop executes a block of code as long as a specified
condition is true. It checks the condition before each iteration. Here's an example:



let i = 0;

while (i < 5) {

console.log(i);

i++;

}

5. do...while Loop: The do...while loop is similar to the while loop but guarantees
that the code block is executed at least once before checking the condition.
Here's an example:

let i = 0;

do {

console.log(i);

i++;

} while (i < 5);

Control flow structures allow you to control the flow of your program and make it
more dynamic and adaptable.

Functions
Functions in JavaScript are reusable blocks of code that perform specific tasks. They
allow you to organize and modularize your code, making it more maintainable and
reusable. Functions can take input, called parameters or arguments, and can return a
value as output.

1. Defining Functions:
In JavaScript, you can define a function using the function keyword, followed by
the function name, a pair of parentheses for parameters (if any), and a block of
code enclosed in curly braces. Here's an example:

function greet(name) {

console.log("Hello, " + name + "!");

}



In this example, greet is the name of the function, and name is the parameter. The
code block inside the function will be executed when the function is called.

2. Calling Functions:
To execute a function and run its code, you need to call it. You can call a function
by using its name followed by parentheses and passing arguments (if any) within
the parentheses. Here's an example of calling the greet function:

greet("John");

In this case, the string "John" is passed as an argument to the greet function. The
function will be executed, and it will log the message "Hello, John!" to the console.

3. Function Parameters and Arguments:
Functions can accept parameters, which act as placeholders for values that will
be passed to the function when it is called. Parameters are declared within the
parentheses of the function declaration. Here's an example:

function multiply(a, b) {

return a * b;

}

In this example, the multiply function has two parameters, a and b. When the function
is called, you need to provide arguments that match the number and order of the
parameters. For example:

let result = multiply(3, 4);

console.log(result); // Output: 12

Here, the values 3 and 4 are passed as arguments to the multiply function. The
function multiplies these values and returns the result, which is then stored in the result
variable and logged to the console.

4. Return Statement:



Functions can also return values using the return statement. The return
statement specifies the value that the function should return when it is called.
Here's an example:

function square(number) {

return number * number;

}

let result = square(5);

console.log(result); // Output: 25

In this example, the square function takes a number parameter, squares it, and returns
the result. When the function is called with the argument 5, it returns 25, which is then
stored in the result variable and logged to the console.

5. Function Expressions and Arrow Functions:
In addition to the traditional function declaration, JavaScript also supports
function expressions and arrow functions.

● Function Expressions:
A function expression assigns a function to a variable. Here's an example:

const greet = function(name) {

console.log("Hello, " + name + "!");

};

greet("John");

In this example, the function expression is assigned to the variable greet. The function
can then be called using the variable name, followed by parentheses.

● Arrow Functions:
Arrow functions provide a more concise syntax for defining functions. They use the =>
syntax and have implicit return. Here's an example:

const multiply = (a, b) => a * b;



let result = multiply(3, 4);

console.log(result); // Output: 12

In this example, the arrow function multiply takes two parameters, a and b, and returns
their product. The arrow function is assigned to the variable multiply, and it can be
called using the variable name, followed by parentheses.

Functions play a crucial role in JavaScript programming. They enable code reuse,
modularization, and help in organizing complex logic into manageable units. By utilizing
functions, you can write cleaner, more maintainable, and reusable code.


