
Lesson 9: Unsupervised Learning

Unsupervised learning is a type of machine learning that involves discovering patterns
or relationships in data without the use of explicit labels or supervision. Unlike
supervised learning, where the algorithm is provided with labeled examples to learn
from, unsupervised learning involves working with unstructured or unlabeled data and
finding hidden structures or relationships within it.

In unsupervised learning, the goal is to uncover underlying patterns or structures in the
data, such as clusters, outliers, or latent factors, that can be used for further analysis or
decision making. Unsupervised learning algorithms include clustering, anomaly
detection, dimensionality reduction, and association rule mining, among others.

Unsupervised learning is useful in a wide range of applications, including customer
segmentation, anomaly detection, image and speech recognition, and recommendation
systems. It is a powerful tool for exploring and understanding large, complex datasets,
and can often reveal insights and patterns that may not be immediately apparent
through other methods.

Clustering Basics
Clustering is a fundamental technique in unsupervised learning that involves grouping
similar data points together into clusters. Unlike supervised learning, where the data is
labeled, unsupervised learning involves working with unlabeled data, and clustering is
one of the most common approaches for analyzing such data.

The goal of clustering is to find patterns and structure in the data, by grouping similar
data points together based on some similarity metric. The similarity metric can be based
on various measures, such as distance, similarity, or density, depending on the specific
clustering algorithm.

Clustering algorithms can be broadly divided into three categories: partitioning,
hierarchical, and density-based. Partitioning algorithms, such as k-means, partition the
data into a fixed number of clusters, whereas hierarchical algorithms, such as
agglomerative clustering, create a hierarchy of nested clusters. Density-based
algorithms, such as DBSCAN, group together data points that are within a certain
density threshold.



Clustering has many applications in various fields, such as image processing, natural
language processing, and customer segmentation. By identifying groups of similar data
points, clustering can help to reveal underlying patterns and relationships in the data,
which can be useful for various tasks, such as anomaly detection, recommendation
systems, and data visualization.

k-Means Clustering
k-Means Clustering is a popular unsupervised learning technique used to cluster data
into a pre-specified number of groups or clusters. The algorithm is based on the concept
of minimizing the sum of squared distances between the data points and their assigned
cluster centers.

The k-means algorithm works by first selecting k initial cluster centers, either randomly
or through some other initialization method. Each data point is then assigned to the
closest cluster center, based on a distance metric such as Euclidean distance. The
mean of each cluster is then computed and used as the new cluster center. This
process is repeated iteratively, with data points being reassigned to new clusters and
cluster centers being updated, until convergence or until some stopping criterion is met.

k-means clustering has several advantages, including its simplicity and ease of
implementation. It is also computationally efficient and can be used with large datasets.
However, k-means can be sensitive to the initial cluster center selection and can
converge to suboptimal solutions.

There are several extensions and variations of k-means, including fuzzy k-means and
hierarchical k-means. These variations offer increased flexibility and can often produce
better clustering results, but can be more computationally expensive.

k-Means clustering is one of the most commonly used unsupervised learning algorithms
for clustering tasks. It is a simple but powerful algorithm that can partition a dataset into
k clusters based on the similarity between data points. The algorithm works by
iteratively optimizing a clustering objective function, which measures the similarity
between data points and their assigned cluster centers.



Here is a brief overview of the k-means algorithm:

1. Choose the number of clusters k.
2. Initialize k cluster centers randomly.
3. Assign each data point to the nearest cluster center.
4. Recalculate the cluster centers as the mean of the data points assigned to each

cluster.
5. Repeat steps 3-4 until convergence (i.e., until the cluster centers no longer

change).

To better understand how the k-means algorithm works, let's take a look at an example
implementation on a dataset. In this example, we will use the scikit-learn library to
perform k-means clustering on the Iris dataset.

# import libraries

from sklearn.datasets import load_iris

from sklearn.cluster import KMeans

# load dataset

iris = load_iris()

X = iris.data

# initialize k-means object with 3 clusters

kmeans = KMeans(n_clusters=3)

# fit the k-means object to the data

kmeans.fit(X)

# retrieve the labels assigned to each data point

labels = kmeans.labels_

# retrieve the coordinates of the cluster centers

centers = kmeans.cluster_centers_

In this code example, we first load the Iris dataset and extract the input data. Then, we
initialize a k-means object with 3 clusters and fit it to the data. Finally, we retrieve the
labels assigned to each data point and the coordinates of the cluster centers.



We can visualize the results of the clustering using a scatter plot, where each data point
is colored according to its assigned cluster.

import matplotlib.pyplot as plt

# plot the results

plt.scatter(X[:, 0], X[:, 1], c=labels)

plt.scatter(centers[:, 0], centers[:, 1], marker='*', s=200,

c='#050505')

plt.show()

In this visualization, we can see that the k-means algorithm has successfully clustered
the Iris dataset into 3 distinct clusters based on the similarity between the data points.
The cluster centers are marked with a star symbol.

Overall, the k-means algorithm is a powerful tool for clustering tasks and can be easily
implemented in Python using libraries like scikit-learn.

Hierarchical Clustering
Hierarchical clustering is a type of clustering algorithm that creates a hierarchy of
clusters by iteratively merging or splitting existing clusters. There are two main types of
hierarchical clustering: agglomerative and divisive.

In agglomerative hierarchical clustering, each data point initially forms its own cluster,
and the algorithm proceeds by iteratively merging the two closest clusters. The distance
between two clusters is typically defined as the distance between the closest pair of
data points from each cluster. This process continues until all data points belong to a
single cluster.

In divisive hierarchical clustering, the process is the opposite of agglomerative
clustering: all data points initially belong to a single cluster, and the algorithm proceeds
by iteratively splitting the cluster into smaller subclusters. The distance between two
subclusters is typically defined as the distance between the farthest pair of data points
from each subcluster. This process continues until each subcluster consists of a single
data point.



One advantage of hierarchical clustering is that it can produce a dendrogram, which is a
tree-like diagram that shows the hierarchical relationships between clusters. This can be
useful for visualizing and interpreting the results of the clustering.

Hierarchical clustering can be used for a wide range of applications, including image
segmentation, gene expression analysis, and customer segmentation in marketing.
However, it can be computationally expensive and may not be suitable for large
datasets or datasets with high dimensionality.

Density-Based Clustering
Density-based clustering is a type of unsupervised learning algorithm that groups
together data points based on their density. It works by identifying regions of high
density in the data space, and then assigning each point to a cluster based on its
proximity to these high-density regions. This approach is particularly useful for data that
has irregular shapes and varying densities.

One of the most popular density-based clustering algorithms is DBSCAN
(Density-Based Spatial Clustering of Applications with Noise). DBSCAN starts with a



random point in the dataset and then finds all nearby points within a certain distance,
called the epsilon neighborhood. If the number of points in the neighborhood is above a
certain threshold, the point is considered to be in a dense region, and all neighboring
points are added to the same cluster. The algorithm then moves to the next unvisited
point and repeats the process until all points have been visited.

Another density-based clustering algorithm is OPTICS (Ordering Points To Identify the
Clustering Structure), which is an extension of DBSCAN that allows for more flexible
clustering. OPTICS computes a reachability distance for each point, which measures
the distance between the point and its neighbors in the dataset. Points with low
reachability distances are considered to be in dense regions, while points with high
reachability distances are considered to be in sparse regions.

Density-based clustering algorithms are useful in a variety of applications, such as
image segmentation, anomaly detection, and identifying groups of similar objects in
large datasets. However, they can be sensitive to the choice of hyperparameters, such
as the epsilon neighborhood size, and may not perform well on datasets with varying
densities or complex structures.



Anomaly Detection
Anomaly detection is a technique in unsupervised learning that involves identifying
unusual or rare data points that deviate significantly from the norm. Anomaly detection
is used in a variety of applications, including fraud detection, network intrusion
detection, and equipment failure prediction.

The basic idea behind anomaly detection is to define a notion of what is normal or
expected in the data and then identify any data points that do not conform to that notion.
There are several approaches to anomaly detection, including statistical methods,
machine learning techniques, and rule-based systems.

Statistical methods for anomaly detection involve modeling the distribution of the data
and identifying data points that are unlikely to occur under that distribution. Machine
learning techniques for anomaly detection involve training a model on a dataset of
normal data points and then using the model to identify any data points that deviate
significantly from the norm. Rule-based systems for anomaly detection involve defining
a set of rules or thresholds for what is considered normal behavior and flagging any
data points that violate those rules.

Anomaly detection can be a challenging problem, as anomalous data points may be
rare or difficult to define. Furthermore, the cost of false positives and false negatives
can vary greatly depending on the application, and it is important to balance the two
appropriately.

Here is an example code for anomaly detection using the Isolation Forest algorithm in
Python:

import pandas as pd

from sklearn.ensemble import IsolationForest

# Load data

data = pd.read_csv('data.csv')

# Define the outlier fraction

outlier_frac = 0.05



# Select features for analysis

features = ['feature_1', 'feature_2', 'feature_3']

# Subset the data to the selected features

X = data[features]

# Initialize the IsolationForest algorithm

isoforest = IsolationForest(contamination=outlier_frac)

# Fit the model to the data

isoforest.fit(X)

# Predict the outlier scores for the data points

outlier_scores = isoforest.decision_function(X)

# Add the outlier scores to the original data frame

data['outlier_score'] = outlier_scores

# Identify the anomalies using a threshold on the outlier score

anomalies = data[data['outlier_score'] < -0.5]

In this example, we load the data from a CSV file and select a subset of features for
analysis. We then initialize an instance of the IsolationForest algorithm with a specified
outlier fraction, fit the model to the selected features, and predict the outlier scores for
the data points. Finally, we add the outlier scores to the original data frame and identify

the anomalies using a threshold on the outlier score.

Note that the threshold value for identifying anomalies may need to be adjusted based
on the specific data set and problem domain.



Evaluating Clustering Performance
Evaluating clustering performance is essential to determine the quality and
effectiveness of the clustering algorithm applied. There are various metrics and
techniques available for evaluating clustering performance, depending on the type of
data, the algorithm used, and the objective of the analysis.

One of the most commonly used metrics for evaluating clustering performance is the
Silhouette score, which measures the similarity of an object to its own cluster compared
to other clusters. The Silhouette score ranges from -1 to 1, with higher scores indicating
better clustering results.

Another popular metric for evaluating clustering performance is the Calinski-Harabasz
index, which measures the ratio of between-cluster variance to within-cluster variance.
Higher Calinski-Harabasz scores indicate better clustering performance.

In addition to these metrics, visual inspection of the clustering results can also provide
valuable insights into the effectiveness of the algorithm. This can be done by creating
scatter plots or heatmaps to visualize the clusters and the distribution of the data points
within each cluster.

It is important to note that there is no one-size-fits-all approach to evaluating clustering
performance, and the appropriate metrics and techniques will depend on the specific
problem and data being analyzed. Therefore, it is important to consider multiple
evaluation metrics and techniques and to choose the ones that are most appropriate for
the specific analysis.


