
Lesson 8: Sentiment Analysis
Sentiment analysis, also known as opinion mining, is a branch of natural language
processing that focuses on identifying and extracting subjective information from text.
The goal of sentiment analysis is to determine the overall sentiment or emotional tone of
a piece of text, which can be positive, negative, or neutral.

Sentiment analysis is becoming increasingly important in various industries, including
marketing, social media monitoring, and customer service. By analyzing the sentiment
of customer feedback, businesses can gain valuable insights into their customers'
opinions and preferences, which can be used to improve products and services.

There are various approaches to sentiment analysis, ranging from rule-based systems
to machine learning models. Rule-based systems rely on predefined rules and
dictionaries to identify sentiment-bearing words and phrases, while machine learning
models use algorithms to learn from data and identify patterns in text.

One of the biggest challenges in sentiment analysis is dealing with the ambiguity and
complexity of natural language. For example, sarcasm, irony, and context can all affect
the sentiment of a piece of text. Additionally, sentiment analysis models may be biased
based on the training data they are trained on, leading to inaccurate results.

To address these challenges, researchers have developed more advanced techniques,
such as deep learning models that can capture the nuances of natural language and
contextual information. Additionally, researchers are working on developing more
diverse and inclusive training datasets to reduce bias in sentiment analysis models.

Definition and Importance of Sentiment Analysis
Sentiment Analysis is a subfield of Natural Language Processing (NLP) that focuses on
analyzing and classifying subjective information present in text, such as opinions,
emotions, and attitudes. The goal of sentiment analysis is to automatically identify the
sentiment of a piece of text, whether it is positive, negative, or neutral.

Sentiment analysis has become increasingly important in recent years due to the
explosive growth of social media and online reviews, which provide vast amounts of
unstructured text data that can be analyzed to gain insights into customer opinions and
behaviors. Sentiment analysis is widely used in industries such as marketing, customer



service, and product development, as it can help companies understand customer
sentiment towards their products and services, and identify areas for improvement.

In addition to its commercial applications, sentiment analysis also has several important
research applications. It can be used to analyze public opinion on political and social
issues, monitor online discussions and debates, and even predict election outcomes. As
such, sentiment analysis is a rapidly growing field with many exciting research areas
and applications.

However, sentiment analysis is a challenging task due to the complexity of human
language and the subjectivity of opinions and emotions. Different people may have
different opinions about the same object or event, and language is full of sarcasm, irony,
and other forms of figurative language that can be difficult for computers to interpret
accurately. Therefore, developing accurate and reliable sentiment analysis models
requires careful consideration of the language and context in which the text is used, as
well as the appropriate selection of machine learning algorithms and evaluation metrics.



Supervised Sentiment Analysis
Supervised sentiment analysis is an approach in natural language processing (NLP)
that employs machine learning techniques to predict the sentiment or emotional tone
expressed in a piece of text. This method relies on a labeled dataset, where each text
document is annotated with sentiment labels such as positive, negative, or neutral. By
training a model on this labeled dataset, it learns to classify new, unlabeled text based
on the sentiment it conveys.

To train a supervised sentiment analysis model, various features are typically extracted
from the text. These features can include word frequencies, n-grams (sequences of
adjacent words), part-of-speech tags, or even more advanced linguistic features. The
model then utilizes these features to learn patterns and relationships between the text
and the sentiment labels during the training process.

Supervised sentiment analysis models can be implemented using different machine
learning algorithms, including logistic regression, support vector machines (SVM),
decision trees, or neural networks. These algorithms learn from the labeled training data
to create a predictive model that can generalize sentiment classification to new, unseen
text.

One of the main advantages of supervised sentiment analysis is its ability to achieve
high accuracy in sentiment prediction when trained on large, high-quality labeled
datasets. Additionally, it allows for the inclusion of various linguistic and contextual
features, enabling the model to capture more nuanced sentiment patterns.

However, supervised sentiment analysis also has limitations. It heavily relies on the
availability of accurately labeled training data, which can be time-consuming and costly
to create, especially for specialized domains or fine-grained sentiment analysis. The
model's performance can also be influenced by bias present in the labeled data or the



chosen features. Furthermore, supervised sentiment analysis models may require
regular updates to account for evolving language use and new sentiment expressions.

Despite these limitations, supervised sentiment analysis is widely used in industry and
research for various applications. It enables businesses to monitor brand reputation,
analyze customer feedback, gauge public opinion on social media, and conduct market
research. By accurately identifying sentiment, organizations can gain valuable insights
to inform decision-making processes and improve customer satisfaction.

In conclusion, supervised sentiment analysis is a powerful approach in NLP that
leverages machine learning algorithms and labeled data to predict the sentiment
expressed in text. While it offers high accuracy and versatile feature selection, it
necessitates labeled training data and may require periodic updates to account for
changes in language use. Supervised sentiment analysis remains a valuable tool for
sentiment analysis tasks across different domains and applications.

Unsupervised Sentiment Analysis
Unsupervised sentiment analysis is an approach in natural language processing (NLP)
that aims to identify and classify the sentiment or emotional tone of text without relying
on labeled training data. This technique is particularly useful when labeled data is
scarce or difficult to obtain, allowing for the analysis of large volumes of text without the
need for manual annotation.

One common method in unsupervised sentiment analysis is the lexicon-based
approach. This approach utilizes sentiment lexicons, which are dictionaries or lists of
words associated with positive or negative sentiment. Each word in the text is assigned
a sentiment score based on its presence in the lexicon. The sentiment score can be
calculated by considering the number of positive and negative words in the text or by
employing more sophisticated techniques such as word embeddings or contextual
analysis.



Another approach to unsupervised sentiment analysis is topic modeling. Topic modeling
techniques, such as Latent Dirichlet Allocation (LDA), are employed to identify the
underlying topics within a collection of documents. Once the topics are determined, the
sentiment of each topic can be analyzed by examining the sentiment of the words
associated with it. This allows for sentiment analysis that takes into account the context
and topic-dependence of sentiment expression.

Unsupervised sentiment analysis has its limitations. It may struggle to accurately
classify sentiment in cases involving sarcasm, irony, or other forms of figurative
language where sentiment is conveyed indirectly. Additionally, the quality and coverage
of the sentiment lexicons or the effectiveness of the topic modeling can impact the
accuracy of unsupervised sentiment analysis results.

Nevertheless, unsupervised sentiment analysis remains a valuable tool for gaining
insights from large volumes of text data when labeled training data is limited or not
available. It enables businesses and researchers to analyze customer feedback, social
media posts, online reviews, or other text sources to gain a broader understanding of
sentiment and public opinion on various topics.

Overall, while unsupervised sentiment analysis has its limitations, it provides a useful
alternative when labeled data is scarce and allows for the analysis of sentiment on a
larger scale, providing valuable insights for various applications in business intelligence,
social media analysis, and market research.

Evaluation Metrics for Sentiment Analysis
There are several evaluation metrics commonly used for sentiment analysis, depending
on the type of analysis and the available labeled data:

Accuracy
Accuracy is a widely used metric for evaluating supervised sentiment analysis models. It
quantifies the percentage of correctly classified instances in a labeled dataset. The
calculation of accuracy involves comparing the predicted sentiment labels to the true
labels and determining the proportion of correctly classified instances.

While accuracy provides a simple and intuitive measure of overall model performance, it
can be misleading in certain scenarios. One such scenario is when dealing with
imbalanced datasets. Imbalanced datasets are characterized by a significant disparity in



the number of instances across different sentiment classes. In such cases, a model that
predominantly predicts the majority class can achieve a high accuracy due to the bias
towards the dominant class. However, this does not guarantee accurate predictions for
the minority classes, thus undermining the reliability of accuracy as the sole evaluation
metric. To account for imbalanced datasets, alternative evaluation metrics should be
considered, such as precision, recall, F1 score, or area under the precision-recall curve.

Furthermore, accuracy can also be deceptive when sentiment classes have different
frequencies. If one sentiment class is much more prevalent than others, a classifier that
assigns the majority class label to all instances may yield a high accuracy. However, this
may indicate poor performance in accurately capturing sentiment across all classes,
particularly the minority ones. To obtain a more comprehensive assessment, evaluation
metrics that examine individual class performance, such as macro-averaged precision,
recall, or F1 score, should be utilized.

Precision, Recall, and F1 score
Precision, recall, and F1 score are fundamental metrics used in binary classification
tasks, including supervised sentiment analysis. These metrics provide valuable insights
into the performance of a classifier by examining different aspects of its predictions.

Precision measures the proportion of true positive predictions out of all positive
predictions made by the classifier. In sentiment analysis, precision indicates the
accuracy of the classifier in correctly identifying positive or negative sentiment. A high
precision score signifies that the classifier has a low rate of false positives, meaning that
it accurately predicts positive sentiment when it is truly present.

Recall, also known as sensitivity or true positive rate, measures the proportion of true
positive predictions out of all instances that actually belong to the positive class. In
sentiment analysis, recall indicates the classifier's ability to capture all positive instances
in the dataset. A high recall score implies that the classifier has a low rate of false
negatives, meaning that it can effectively identify positive sentiment when it is present.

F1 score is the harmonic mean of precision and recall. It provides a balanced measure
that combines the strengths of both metrics. F1 score is particularly useful when the
dataset is imbalanced or when there is an uneven distribution between positive and
negative instances. It considers both precision and recall, giving equal weight to both
measures. A high F1 score indicates that the classifier achieves both high precision and



high recall, striking a balance between correctly identifying positive sentiment and
capturing all positive instances.

These metrics are often calculated based on a confusion matrix, which summarizes the
classifier's performance by counting the number of true positives, true negatives, false
positives, and false negatives. From the confusion matrix, precision, recall, and F1
score can be derived to evaluate the sentiment analysis model accurately.

Mean Squared Error (MSE)
Mean Squared Error (MSE) is a commonly used metric for regression-based sentiment
analysis tasks. Unlike binary classification tasks that involve discrete sentiment
categories, regression tasks focus on predicting continuous sentiment scores.

MSE quantifies the average squared difference between the predicted sentiment scores
and the actual sentiment scores. It provides an assessment of the overall prediction
error by considering the magnitude of the differences between predicted and actual
values.

To calculate MSE, the squared difference is computed for each predicted sentiment
score and its corresponding actual sentiment score. These squared differences are then
averaged to obtain the MSE. The squared differences ensure that both positive and
negative deviations from the actual sentiment scores contribute to the overall error
measurement. By squaring the differences, larger deviations have a more significant
impact on the MSE.

The interpretation of MSE depends on the scale of the sentiment scores. A lower MSE
indicates that the predicted sentiment scores are closer to the actual scores on average,
implying a better model performance. Conversely, a higher MSE suggests that the
predicted sentiment scores have larger deviations from the actual scores.

MSE is particularly relevant in regression-based sentiment analysis, where the goal is to
predict continuous sentiment values rather than class labels. It provides a measure of
how well the model captures the fine-grained sentiment nuances in the data. However, it
is worth noting that the interpretation of MSE can be influenced by the scale and
distribution of sentiment scores in the dataset. Thus, it is important to consider the
context and characteristics of the sentiment analysis task when interpreting and
comparing MSE values.



Cohen's Kappa
Cohen's Kappa is a widely used metric for assessing the inter-annotator agreement in
sentiment analysis tasks, especially when multiple annotators label the same dataset. It
quantifies the level of agreement between annotators that goes beyond what would be
expected by chance.

Inter-annotator agreement is crucial in sentiment analysis as it measures the
consistency and reliability of the sentiment labels assigned by different annotators.
Cohen's Kappa takes into account both the observed agreement between annotators
and the expected agreement due to chance.

To calculate Cohen's Kappa, a confusion matrix is constructed based on the sentiment
labels assigned by each annotator. The matrix includes the number of instances where
the annotators agree on the sentiment label, as well as the number of instances where
they disagree. From this confusion matrix, Cohen's Kappa is computed as the ratio of
the observed agreement beyond chance to the maximum possible agreement beyond
chance.

Cohen's Kappa ranges from -1 to 1. A value of 1 indicates perfect agreement between
annotators, beyond what would be expected by chance. A value of 0 indicates
agreement that is solely due to chance, while a negative value implies agreement that is
worse than expected by chance.

Interpreting Cohen's Kappa values can vary depending on the specific domain and task.
Typically, a Kappa value above 0.8 is considered excellent agreement, while values
between 0.6 and 0.8 indicate substantial agreement. Values between 0.4 and 0.6
suggest moderate agreement, while values below 0.4 indicate fair to poor agreement.

Cohen's Kappa is particularly valuable when evaluating sentiment analysis tasks with
multiple annotators, as it provides an objective measure of the agreement that goes
beyond chance. It helps assess the reliability and consistency of sentiment annotations,
allowing for a more accurate understanding of the quality and consistency of the labeled
sentiment data.



Area Under the Receiver Operating Characteristic Curve (AUC-ROC):
Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a widely used
metric in sentiment analysis tasks where the objective is to predict the probability of a
specific sentiment category rather than discrete sentiment labels. AUC-ROC provides a
comprehensive evaluation of the model's performance by capturing the tradeoff
between the true positive rate and false positive rate across various probability
thresholds.

The Receiver Operating Characteristic (ROC) curve is a graphical representation of the
model's performance as the probability threshold for classifying sentiment is varied. The
true positive rate (sensitivity) is plotted on the y-axis, representing the proportion of
correctly predicted positive instances, while the false positive rate (1 - specificity) is
plotted on the x-axis, representing the proportion of incorrectly predicted negative
instances. Each point on the ROC curve corresponds to a particular probability
threshold.

AUC-ROC quantifies the overall performance of the model by calculating the area under
the ROC curve. The AUC-ROC value ranges from 0 to 1, where a higher value indicates
better performance. An AUC-ROC of 1 represents a perfect model that achieves a
100% true positive rate with no false positives, while an AUC-ROC of 0.5 suggests a
random classifier that performs no better than chance.

AUC-ROC provides a single score that reflects the model's ability to distinguish between
positive and negative sentiment classes across different probability thresholds. It is
particularly useful in sentiment analysis tasks where predicting sentiment probabilities is
essential, such as sentiment intensity analysis or probabilistic sentiment classification.

By considering the entire range of possible probability thresholds, AUC-ROC offers a
robust evaluation of the model's discriminatory power and its ability to balance true
positive and false positive rates. It is less sensitive to class imbalance or specific
probability threshold choices compared to metrics like accuracy. However, it is worth
noting that AUC-ROC does not provide insights into the performance at a specific
probability threshold or the calibration of sentiment probabilities.

It is important to choose the appropriate evaluation metric for the specific sentiment
analysis task and to report the results clearly to ensure reproducibility and comparability
across different studies.



CODE EXAMPLE

Supervised Sentiment Analysis

Here's a code example for supervised sentiment analysis using Python and the
scikit-learn library. This example demonstrates how to train a logistic regression
classifier on a labeled sentiment analysis dataset and use it to predict the sentiment of
new text instances.

# Import necessary libraries

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

# Sample labeled data for sentiment analysis

texts = ["I love this movie!",

"This restaurant has terrible service.",

"The book was average.",

"The concert was fantastic!"]

labels = ["positive",

"negative",

"neutral",

"positive"]

# Create a feature extractor using CountVectorizer

vectorizer = CountVectorizer()

# Convert texts into a numerical feature matrix

X = vectorizer.fit_transform(texts)

# Create a sentiment classifier using logistic regression

classifier = LogisticRegression()



# Train the classifier on the labeled data

classifier.fit(X, labels)

# Test the classifier on new text instances

new_texts = ["I hate this product.",

"The customer service was excellent!"]

# Convert new texts into a numerical feature matrix

new_X = vectorizer.transform(new_texts)

# Predict the sentiment of the new texts

predictions = classifier.predict(new_X)

# Print the predicted sentiments

for text, prediction in zip(new_texts, predictions):

print(f"Text: {text}\nSentiment: {prediction}\n")

# Calculate accuracy on the training data

train_predictions = classifier.predict(X)

train_accuracy = accuracy_score(labels, train_predictions)

print(f"Training Accuracy: {train_accuracy}")

Explanation:

1. First, import the necessary libraries including CountVectorizer for feature
extraction, LogisticRegression for the classifier, and accuracy_score for
evaluating accuracy.

2. Define a list of labeled texts and their corresponding sentiment labels as training
data.

3. Create a CountVectorizer object to convert the text data into a numerical feature
matrix.

4. Use the fit_transform method of the CountVectorizer object to convert the training
texts into the feature matrix X.

5. Create a LogisticRegression classifier.
6. Train the classifier by calling the fit method with the feature matrix X and the

sentiment labels.
7. Define a list of new texts for prediction.



8. Use the transform method of the CountVectorizer object to convert the new texts
into a feature matrix new_X.

9. Use the trained classifier to predict the sentiment of the new texts by calling the
predict method on new_X.

10.Print the predicted sentiments for the new texts.
11.Calculate the accuracy of the classifier on the training data by comparing the

predicted labels with the actual labels using the accuracy_score function.

This code demonstrates the basic steps for supervised sentiment analysis, including
data preprocessing, feature extraction, model training, and prediction. Keep in mind that
this is a simplified example, and in practice, you may need to perform additional
preprocessing steps and fine-tune the model parameters to achieve better performance.

Unsupervised Sentiment Analysis

Unsupervised sentiment analysis is a challenging task, as it doesn't rely on labeled
data. However, one common approach is lexicon-based sentiment analysis, which uses
sentiment lexicons to analyze the sentiment of text. Here's a code example in Python
using the NLTK library for lexicon-based unsupervised sentiment analysis:

# Import necessary libraries

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

# Sample text data

texts = ["I love this movie!",

"This restaurant has terrible service.",

"The book was average.",

"The concert was fantastic!"]

# Load the sentiment lexicon

nltk.download('opinion_lexicon')

positive_words = set(opinion_lexicon.positive())

negative_words = set(opinion_lexicon.negative())



# Perform unsupervised sentiment analysis

for text in texts:

# Tokenize the text

tokens = word_tokenize(text.lower())

# Remove stop words

stopwords_en = set(stopwords.words('english'))

tokens = [token for token in tokens if token not in stopwords_en]

# Calculate sentiment score

sentiment_score = sum([1 if word in positive_words else -1 if

word in negative_words else 0 for word in tokens])

# Assign sentiment label based on score

sentiment_label = 'positive' if sentiment_score > 0 else

'negative' if sentiment_score < 0 else 'neutral'

# Print the sentiment analysis result

print(f"Text: {text}\nSentiment: {sentiment_label}\n")

Explanation:

1. Import the necessary libraries, including nltk for natural language processing
tasks.

2. Define a list of text data for sentiment analysis.
3. Download the opinion lexicon using nltk.download('opinion_lexicon').
4. Tokenize the text by calling word_tokenize on each text instance and convert it to

lowercase.
5. Remove stop words using the stopwords module from NLTK.
6. Calculate the sentiment score by summing the presence of positive and negative

words in the text.
7. Assign a sentiment label based on the sentiment score. If the score is positive,

the label is 'positive'; if the score is negative, the label is 'negative'; otherwise, the
label is 'neutral'.

8. Print the sentiment analysis result for each text.



This code demonstrates a simple lexicon-based approach for unsupervised sentiment
analysis. It utilizes the Opinion Lexicon provided by NLTK, which contains lists of
positive and negative words. The code tokenizes the text, removes stop words,
calculates the sentiment score by counting the occurrence of positive and negative
words, and assigns a sentiment label based on the score. The sentiment labels can be
customized or expanded based on your specific needs.

Keep in mind that this is a basic example, and lexicon-based methods have limitations
in capturing context-specific sentiment or dealing with sarcasm and irony. More
advanced approaches, such as hybrid methods combining lexicon-based analysis with
machine learning techniques, may be necessary for more accurate and nuanced
unsupervised sentiment analysis.


