
Lesson 8: Recurrent Neural Networks
Recurrent neural networks (RNNs) are specifically designed to handle sequential data
that has a temporal or sequential relationship, such as time series or natural language.
RNNs allow the network to capture temporal dependencies in the data by processing
and transmitting information across time steps.

In RNNs, the output at each time step is dependent on the input at the current time step
and the hidden state of the previous time step. This hidden state is passed forward in
time and serves as a memory for the network, allowing it to retain information about
previous time steps. The process of transmitting the hidden state across time steps is
called recurrence, which is the distinguishing feature of RNNs.

One of the challenges of training RNNs is the vanishing gradient problem, which occurs
when the gradients become extremely small as they are propagated backward in time.
This can cause the weights of the earlier layers to be updated very slowly, which can
result in slow convergence or even convergence to a suboptimal solution.

To address this issue, several architectures have been proposed, such as Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). These architectures
use gating mechanisms to selectively update the hidden state, allowing the network to
remember or forget information as needed.

LSTM, for example, uses a memory cell that can selectively forget or add new
information to the current hidden state, while GRU uses a gating mechanism to control
the flow of information into and out of the hidden state. These architectures have been
shown to be very effective in modeling sequential data and have been used in a wide
range of applications, including speech recognition, machine translation, and time series
prediction.

To train recurrent neural networks (RNNs), we use a variant of backpropagation called
backpropagation through time (BPTT). BPTT involves unrolling the network across time
steps, and computing gradients at each time step. The gradients are then used to
update the weights of the network using an optimization algorithm such as stochastic
gradient descent.

However, training RNNs using BPTT can be challenging due to the problem of
vanishing and exploding gradients. Vanishing gradients occur when the gradients
become very small as they are propagated back in time, which can make it difficult for
the network to learn long-term dependencies. Exploding gradients occur when the



gradients become very large, which can cause the weights to update too much and
destabilize the network.

To address these issues, several techniques have been developed. One common
technique is to use gradient clipping, which involves setting a threshold on the norm of
the gradients and scaling them down if they exceed the threshold. Another technique is
to use gated recurrent units (GRUs) or long short-term memory (LSTM) cells, which are
designed to better capture long-term dependencies in the data.

In summary, training RNNs using BPTT can be challenging due to the problem of
vanishing and exploding gradients. However, several techniques exist to mitigate these
issues, such as gradient clipping and the use of specialized cell types like GRUs and
LSTMs.

LSTM Networks
LSTM (Long Short-Term Memory) networks are a type of recurrent neural network
(RNN) that are designed to handle the vanishing and exploding gradient problem that
can occur in standard RNNs. LSTM networks achieve this by introducing a gating
mechanism that allows the network to selectively remember or forget information from
previous time steps.

In an LSTM network, there are three types of gates: the input gate, the forget gate, and
the output gate. The input gate controls how much information from the current time
step should be added to the memory cell. The forget gate controls how much
information from the previous time step should be forgotten, and the output gate
controls how much information from the memory cell should be output to the next time
step.

During training, the weights of the LSTM network are updated using backpropagation
through time, which involves computing gradients at each time step and propagating
them backwards through the network.

LSTM networks are commonly used for tasks involving sequential data, such as speech
recognition, language translation, and text prediction. They have been shown to achieve
state-of-the-art performance in many of these tasks and have become an important tool
in the field of natural language processing.



EXAMPLE CODE

This code demonstrates how to build and train a simple Long Short-Term Memory
(LSTM) network using the Keras library. The LSTM network is a type of recurrent neural
network (RNN) that is commonly used for modeling sequential data, such as time series

or natural language.
The architecture of the LSTM network consists of a single LSTM layer with 128 memory

units, followed by a dense layer with a single output unit and a sigmoid activation
function for binary classification. The model is compiled using the binary cross-entropy

loss function, the Adam optimizer, and the accuracy metric.
The network is trained on a dataset X_train and y_train with 10 time steps per
sequence, using a batch size of 32 and for 10 epochs. Additionally, the model's

performance is evaluated on a separate validation set (X_test, y_test) during training to
monitor its generalization ability.

from keras.models import Sequential

from keras.layers import LSTM, Dense



# Define the LSTM network architecture

model = Sequential()

model.add(LSTM(128, input_shape=(10, 1)))

model.add(Dense(1, activation='sigmoid'))

# Compile the model

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

# Train the model

model.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

GRU Networks
GRU, short for Gated Recurrent Unit, is a type of recurrent neural network (RNN)
architecture that is used for sequence modeling tasks, such as natural language
processing and speech recognition. It was introduced in 2014 by Cho et al. and is a
variant of the LSTM (Long Short-Term Memory) architecture.

Like LSTMs, GRUs are designed to address the vanishing gradient problem in
traditional RNNs, which occurs when gradients become too small to propagate back
through the network during training. This can make it difficult for the network to learn
long-term dependencies in sequential data.

GRUs use a gating mechanism to selectively update and reset information in the hidden
state of the network. The gate mechanism consists of an update gate, which controls
how much of the previous state should be retained, and a reset gate, which controls
how much of the new input should be added to the current state. The gates are learned
during training and allow the network to selectively forget or remember information over
time.

Compared to LSTMs, GRUs have fewer parameters and are faster to train, making
them a popular choice for applications that require real-time processing or operate on



large datasets. They have been shown to achieve state-of-the-art performance on a
range of natural language processing tasks, including language modeling, machine
translation, and sentiment analysis.

As with other neural network architectures, there are many variations and modifications
of the GRU architecture, including multi-layered GRUs and bi-directional GRUs, which
process the input sequence in both forward and backward directions.


