
Lesson 7: Deep Reinforcement Learning
Deep reinforcement learning is a subfield of machine learning that builds on
reinforcement learning by using deep neural networks to approximate the value function
or policy of an agent. This enables the agent to learn complex and high-dimensional
representations of the environment, allowing it to make decisions based on complex
patterns and features. Deep reinforcement learning has been applied to a variety of
domains, such as robotics and game playing, and has produced impressive results,
including the development of agents that can play complex games such as Go and
poker at superhuman levels.

7.1 Introduction to reinforcement learning
Reinforcement learning (RL) is a branch of machine learning that involves an agent
interacting with an environment to learn how to make decisions that lead to desired
outcomes or rewards. It is a type of learning that focuses on trial-and-error learning
through feedback in the form of rewards or penalties.

RL is particularly useful in sequential decision-making problems, where the agent must
take a sequence of actions over time to reach a desired goal. For instance, in games
like chess, the agent must learn to make the best moves to win the game. In robotics,
RL can be used to train robots to perform tasks like grasping objects, walking, and
navigating through a space.

The agent interacts with the environment by taking actions based on the current state of
the environment. The environment then transitions to a new state based on the agent's
action, and the agent receives a reward or penalty based on the outcome of its action.
The goal of the agent is to learn a policy, or a set of actions, that maximizes the
cumulative reward over time.

There are various RL algorithms, including Q-learning, SARSA, and policy gradient
methods. These algorithms differ in their approach to learning the optimal policy, but
they all share the same goal of maximizing the cumulative reward.

Reinforcement learning has seen significant progress in recent years, with notable
examples like AlphaGo and AlphaZero, which achieved remarkable performance in
complex games without prior knowledge of the rules. RL has also found applications in
other areas such as finance, healthcare, and education. Despite its successes, RL is



still an area of active research, and challenges such as sample efficiency,
exploration-exploitation trade-off, and generalization still need to be addressed.

7.2 Markov decision processes
Markov decision processes (MDPs) are a mathematical framework used to model
decision-making in uncertain environments. MDPs represent decision-making problems
as a sequence of states and actions where the outcome of each action is uncertain. In
an MDP, an agent interacts with the environment over a series of time steps, where at
each time step, the agent observes the current state of the environment and takes an

action based on that state. The
environment then transitions to a
new state, and the agent receives
a reward or penalty based on its
action.

The Markov property is a key
assumption in MDPs, which states
that the current state of the
environment contains all relevant
information for predicting the
future. This means that the
probability of transitioning to a new
state depends only on the current
state and action, and not on any
previous history. This assumption
makes the modeling process

computationally tractable and allows for the use of dynamic programming, Monte Carlo
methods, or temporal difference learning to find an optimal policy.

The goal in MDPs is to learn a policy, which is a mapping from states to actions, that
maximizes the expected cumulative reward over time. This policy can be learned using
various algorithms, such as value iteration or policy iteration, which iteratively update
the values of the state-action pairs to find the optimal policy.

One of the main challenges in using MDPs is determining the optimal policy given the
model of the environment. This is known as the planning problem and can be
computationally expensive for large state spaces. However, approximate methods such



as value iteration and policy iteration can be used to find a close approximation of the
optimal policy.

MDPs have numerous applications in various fields, such as robotics, finance, and
healthcare. For example, MDPs can be used to model financial decision-making
problems such as portfolio optimization, where the goal is to maximize the expected
return while minimizing the risk. In healthcare, MDPs can be used to model treatment
decisions for patients with chronic diseases, where the goal is to maximize the patient's
quality of life while minimizing the cost of treatment.

7.3 Q-Learning
Q-Learning is a model-free reinforcement learning algorithm that has been widely used
to solve sequential decision-making problems. The Q-value represents the expected
cumulative reward that an agent will receive by taking a particular action in a particular
state. Q-Learning algorithm uses the Bellman equation to update the Q-values
iteratively. The Bellman equation expresses the expected cumulative reward for a
state-action pair as the sum of the immediate reward and the discounted expected
cumulative reward of the next state.

Q-Learning algorithm is based on the exploration-exploitation tradeoff, where the agent
explores new actions in order to discover better policies, while also exploiting the
current knowledge to maximize its rewards. The exploration-exploitation tradeoff is
controlled by an epsilon-greedy policy, where the agent selects a random action with
probability epsilon and selects the action with the highest Q-value with probability
1-epsilon.



Q-learning is an off-policy algorithm, which means that it learns a policy that maximizes
the expected cumulative reward, even if it explores other actions that may not be
optimal in the short term. The algorithm works well in discrete and finite action spaces,
but it may not be suitable for problems with continuous state spaces. To address this
limitation, deep Q-networks (DQN) have been developed, which use deep neural
networks to approximate the Q-values and enable Q-learning in continuous state
spaces.

Q-learning has been successfully applied to a variety of problems, such as game
playing, robotics, and recommendation systems. It is a simple yet powerful algorithm
that can learn optimal policies in large state spaces with high-dimensional inputs.
However, it may suffer from the problem of overestimating Q-values, which can lead to
suboptimal policies. To address this problem, several modifications to the Q-learning
algorithm have been proposed, such as double Q-learning and prioritized experience
replay. These modifications improve the performance of the algorithm and make it more
robust to noisy and incomplete data.

CODE EXAMPLE
Here is an example code for implementing Q-Learning algorithm in Python using the

OpenAI Gym library:

import gym

import numpy as np

env = gym.make("FrozenLake-v0")

# Initialize the Q-table with zeros

Q = np.zeros([env.observation_space.n, env.action_space.n])

# Set the hyperparameters

learning_rate = 0.8



discount_factor = 0.95

num_episodes = 2000

# Run the Q-learning algorithm

for episode in range(num_episodes):

state = env.reset()

done = False

while not done:

# Choose an action using the epsilon-greedy policy

if np.random.uniform() < 0.1:

action = env.action_space.sample()

else:

action = np.argmax(Q[state, :])

# Take the action and observe the new state and reward

new_state, reward, done, info = env.step(action)

# Update the Q-table using the Bellman equation

Q[state, action] = Q[state, action] + learning_rate * (reward

+ discount_factor * np.max(Q[new_state, :]) - Q[state, action])

# Move to the next state

state = new_state

# Print the total reward for the episode

print("Episode {}: Total reward = {}".format(episode + 1,

np.sum(rewards)))

In this code, we first create an instance of the FrozenLake environment using the
gym.make function. We then initialize the Q-table with zeros, and set the
hyperparameters for the Q-learning algorithm: the learning rate, discount factor, and
number of episodes.

In each episode, we reset the environment to its initial state and run the Q-learning
algorithm until the episode is completed. Within each episode, we use an
epsilon-greedy policy to choose an action, and update the Q-table using the Bellman
equation. Finally, we print the total reward for the episode.



This code can be modified to work with other OpenAI Gym environments or with custom
environments, and can also be extended to implement more advanced Q-learning
algorithms such as Deep Q-Networks (DQN).


