
Lesson 7: 3D Computer Vision
3D computer vision is an exciting and rapidly advancing field within computer vision that
focuses on the analysis and interpretation of three-dimensional (3D) scenes and
objects. It encompasses the development of algorithms and techniques to acquire,
process, analyze, and understand 3D information from images or other sensing
modalities, enabling machines to perceive and interact with the world in a more
comprehensive and immersive manner.

The applications of 3D computer vision are diverse and encompass various domains. In
robotics, 3D computer vision plays a crucial role in tasks such as object manipulation,
scene understanding, and navigation. Autonomous vehicles heavily rely on 3D
computer vision techniques for environment perception, including obstacle detection
and tracking. In augmented reality and virtual reality systems, 3D computer vision
enables the seamless integration of virtual objects into the real world or the creation of
immersive virtual environments. Additionally, in medical imaging, 3D computer vision is
instrumental in areas like surgical planning, organ segmentation, and disease diagnosis.

Several fundamental tasks form the backbone of 3D computer vision. These tasks
include 3D object recognition, tracking, segmentation, reconstruction, pose estimation,
and motion analysis. 3D object recognition involves identifying and categorizing objects



in 3D scenes, often requiring techniques such as feature detection, matching, and pose
estimation. Tracking aims to follow the movement of objects over time in 3D space,
which is crucial for applications such as object tracking in video sequences or robot
visual servoing. Segmentation focuses on partitioning a 3D scene into meaningful
regions or objects, enabling higher-level understanding and analysis. Reconstruction
aims to create a 3D representation of a scene or object from multiple views, often
involving techniques such as stereo vision, depth estimation, or structure from motion.
Pose estimation determines the position and orientation of objects relative to a camera
or a reference frame, enabling accurate spatial alignment and interaction. Lastly, motion
analysis deals with the estimation and understanding of object motion patterns in 3D
scenes, which is essential for tasks like action recognition, behavior analysis, or tracking
dynamic objects.

To address these tasks, 3D computer vision techniques rely on a combination of
mathematical models, image processing techniques, and machine learning algorithms.
For example, feature-based methods, such as SIFT (Scale-Invariant Feature Transform)
or SURF (Speeded Up Robust Features), are commonly used for 3D object recognition
and tracking by detecting and matching distinctive visual features across different views.
Other techniques, such as depth sensors, stereo vision, or structured light, enable the
acquisition of 3D information from images or directly from sensors. Machine learning
algorithms, such as deep learning, have also made significant contributions to 3D
computer vision, allowing for more accurate and robust analysis and understanding of
3D scenes and objects.

The advancements in 3D computer vision have been fueled by the availability of
large-scale datasets, such as RGB-D datasets, 3D object recognition benchmarks, and
3D reconstruction datasets. These datasets have facilitated the development and
evaluation of novel algorithms and methodologies, accelerating progress in the field.

3D Geometry Fundamentals
Understanding the fundamentals of three-dimensional (3D) geometry is paramount in
the development of computer vision systems that can perceive and interpret the
structure of the world in three dimensions. In computer vision, 3D geometry entails
utilizing mathematical models and algorithms to represent and manipulate the 3D
structure of objects and scenes.

Key concepts in 3D geometry revolve around points, lines, planes, and transformations.
Points represent the spatial locations of objects or features in 3D space, while lines and



planes capture their orientations and surfaces. Transformations, such as translation,
rotation, and scaling, allow for the manipulation of object positions and orientations in
3D space.

Perspective projection is another significant concept in 3D geometry. It enables the
transformation of 3D objects into 2D images, mimicking the way human vision works.
Depth perception, on the other hand, involves estimating the distance of objects from a
camera or sensor, providing an essential cue for understanding the 3D layout of a
scene.

Mastery of 3D geometry fundamentals is vital for various computer vision applications,
including 3D object recognition, reconstruction, and tracking. By utilizing mathematical
models and algorithms to represent and manipulate 3D structures, computer vision
systems can effectively analyze and interpret the 3D world.

A range of algorithms based on 3D geometry principles are employed in computer
vision tasks. For example, the Random Sample Consensus (RANSAC) algorithm is
commonly used for robust estimation of geometric transformations, enabling reliable
alignment of objects or scenes. The Hough transform is another algorithm that allows
for the detection of lines and curves in images, providing valuable geometric
information. The Iterative Closest Point (ICP) algorithm is employed for aligning 3D
point clouds, which is crucial for tasks like registration or tracking.

Advancements in depth sensors and stereo vision have propelled the development of
advanced 3D reconstruction techniques, such as Structure from Motion (SfM) and
Simultaneous Localization and Mapping (SLAM). These techniques leverage multiple



views and perspectives to generate detailed 3D models of scenes and objects, enabling
a more comprehensive understanding of their spatial layout and geometry.

In conclusion, a solid grasp of 3D geometry fundamentals is imperative for effectively
developing computer vision systems capable of accurately perceiving and interpreting
the 3D structure of the world. By employing mathematical models, algorithms, and
techniques related to 3D geometry, computer vision can unlock a wide range of
applications spanning 3D object recognition, reconstruction, tracking, and more.

3D Object Representation
3D object representation plays a critical role in the field of 3D computer vision, as it
involves capturing the shape, texture, and appearance of objects in three-dimensional
space. Various types of 3D object representation exist, each offering unique strengths
and weaknesses. The selection of a specific representation depends on the application
at hand and the characteristics of the objects being modeled.

One commonly used 3D object representation is voxel-based representation. This
approach partitions the object into a regular grid of small cubes, known as voxels, and
assigns a value to each voxel to represent the object's properties, such as color, texture,
or reflectivity. Voxel-based representations are valuable for objects with intricate internal
structures, including organs in medical imaging. Additionally, they are suitable for
applications that demand efficient computations, such as real-time rendering in video
games.

Another prevalent form of 3D object representation is mesh-based representation. In
this approach, the object's surface is approximated using a network of interconnected
triangles. Mesh-based representations are widely used in 3D modeling and animation,
particularly for objects with smooth surfaces like human faces. They provide an efficient



way to represent object geometry and enable various operations, such as deformation
and rendering.

Point-based representations offer an alternative approach to 3D object
representation. In this method, the object is represented as a collection of individual
points in three-dimensional space. Point-based representations excel in capturing fine
details of an object's surface and are commonly utilized in applications such as 3D
scanning and motion capture. They can accurately represent irregular or non-uniform
object shapes.

The choice of 3D object representation depends on the specific application
requirements and the nature of the object being modeled. By employing mathematical
models and algorithms to represent the shape, texture, and appearance of objects in 3D
space, computer vision systems gain the ability to analyze and manipulate 3D objects
and scenes with increased accuracy and precision. These representations facilitate
tasks such as object recognition, tracking, reconstruction, and virtual reality
experiences, enhancing our ability to understand and interact with the 3D world around
us.

3D Reconstruction Techniques
3D reconstruction techniques are integral to the field of 3D computer vision, as they
enable the creation of accurate 3D models from 2D images or other sensing modalities.
A variety of techniques exist for 3D reconstruction, each with its own strengths and
weaknesses. The choice of technique depends on the specific application requirements
and the available sensing modality.



One widely used 3D reconstruction technique is stereo reconstruction. This method
leverages the differences between images captured by two or more cameras to
determine the depth information of the scene or object. By triangulating corresponding
points in the images, stereo reconstruction can reconstruct small-scale objects or indoor
environments with depth precision.

Structure from motion (SfM) is another popular 3D reconstruction technique. It
involves analyzing the motion of a camera or sensor to infer the 3D structure of the
scene or object. SfM is particularly suited for reconstructing larger-scale environments
and outdoor scenes. By observing the changes in the camera's viewpoint and the
corresponding visual cues, SfM can accurately reconstruct the geometry of the scene.

Simultaneous localization and mapping (SLAM) is a technique that combines
mapping and localization. It aims to create a map of an unknown environment while

simultaneously
estimating the camera
or sensor's position
within that
environment. SLAM is
essential in robotics
and autonomous
vehicle applications,
where real-time
mapping and
localization are crucial
for navigation and
scene understanding.



The advent of depth sensors, such as Microsoft's Kinect and time-of-flight cameras, has
propelled the development of depth-based 3D reconstruction techniques. These
techniques rely on depth information to create highly accurate 3D models of objects and
scenes. Depth-based reconstruction is particularly advantageous for applications such
as 3D scanning, virtual and augmented reality, and industrial automation, where precise
3D representations are necessary.

The applications of 3D reconstruction techniques span a wide range of fields, including
robotics, augmented reality, medical imaging, and more. By employing mathematical
models and algorithms to create detailed 3D models of scenes and objects, computer
vision systems can analyze and manipulate 3D information with enhanced accuracy and
precision. This enables advanced applications, such as object recognition, scene
understanding, virtual walkthroughs, and surgical planning, which rely on accurate 3D
representations of the real world.

Stereoscopic Vision
Stereoscopic vision, a technique employed in
3D computer vision, emulates the way human
eyes perceive depth and three-dimensional
objects. By analyzing the disparities between
two or more images captured from slightly
different perspectives, stereoscopic vision
plays a pivotal role in applications such as
depth estimation, object recognition, and
tracking.

To generate a stereoscopic image, multiple
cameras are positioned at slightly different
angles to capture images of the same scene or
object. The disparities between the images,
such as variations in object position or shape,
can then be examined to ascertain the depth
information of the scene or object.

One prominent application of stereoscopic vision is in depth estimation. By leveraging
the disparities between the images captured by the cameras, the distance of objects
from the cameras can be estimated. This information finds utility in numerous fields,



including robotics, autonomous vehicles, and augmented and virtual reality, where
accurate depth perception is crucial.

Stereoscopic vision is also advantageous in object recognition and tracking. The
disparities between the images captured by the cameras can be utilized to detect and
track objects within the scene. This capability proves particularly valuable in security
and surveillance applications, where precise identification and tracking of individuals or
objects are essential.

Moreover, stereoscopic vision contributes to enhancing the understanding and
manipulation of three-dimensional scenes and objects. By analyzing the differences
between multiple images obtained from distinct perspectives, computer vision systems
can generate accurate 3D models and perform various tasks with heightened precision
and accuracy.

In addition to capturing disparities between images, other techniques, such as active
stereo vision, employ structured light or time-of-flight sensors to capture depth
information directly. These techniques provide depth maps that facilitate more accurate
and detailed 3D reconstructions and depth estimation.



Advancements in stereoscopic vision, along with the increasing availability of affordable
and high-quality stereo camera systems, have expanded its applications. It has become
a fundamental component in fields such as robotics, virtual and augmented reality,
medical imaging, and entertainment, enabling more immersive experiences, precise
measurements, and enhanced visual understanding of three-dimensional environments.

Structure from Motion
Structure from Motion (SfM) is an invaluable technique in 3D computer vision that
involves analyzing the motion of a camera or sensor to ascertain the 3D structure of a
scene or object. SfM is particularly useful for creating 3D models of large-scale
environments or outdoor scenes, where other techniques like stereo reconstruction may
be challenging or impractical to employ.

The process of SfM revolves around analyzing the changes in the camera or sensor's
position and orientation as it traverses through the scene. By leveraging this
information, SfM estimates the 3D structure of the scene. This technique can be
employed using a variety of sensing modalities, including cameras, lidar (light detection
and ranging), or radar.

SfM offers several notable advantages. It enables real-time or near-real-time
reconstruction of 3D structures, making it highly beneficial for applications such as
robotics, autonomous vehicles, and augmented reality. SfM is also instrumental in fields
like heritage preservation, archaeology, and cultural heritage, where the accurate
documentation and preservation of large-scale environments or objects are of
paramount importance.



SfM is often used in combination with other 3D reconstruction techniques, such as
stereo reconstruction or depth-based reconstruction. By integrating these approaches,
more accurate and detailed 3D models of scenes and objects can be created. Through
the utilization of mathematical models and algorithms that analyze camera or sensor
motion and estimate 3D structure, SfM enables the generation of precise and
comprehensive 3D models of expansive environments and outdoor scenes.

The SfM process typically involves three main steps: feature detection and matching,
camera motion estimation, and 3D reconstruction. In the first step, distinctive features
are detected in the images or point clouds captured by the camera or sensor. These
features are then matched across multiple frames to establish correspondences. In the
camera motion estimation step, the camera or sensor poses are estimated by analyzing
the feature correspondences and computing the camera motion using techniques such
as bundle adjustment. Finally, in the 3D reconstruction step, the 3D structure of the
scene is computed by triangulating the matched feature points or by performing dense
reconstruction using depth estimation techniques.



SfM has revolutionized several industries and applications. In robotics and autonomous
vehicles, SfM enables accurate localization and mapping, facilitating navigation and
obstacle avoidance. In augmented reality, SfM allows for the realistic overlay of virtual
objects onto real-world scenes. Furthermore, in fields such as urban planning,
environmental monitoring, and virtual tourism, SfM aids in the creation of detailed and
immersive 3D models, providing valuable insights and enhancing visualization
capabilities.

As technology advances, SfM continues to evolve. Improved camera and sensor
technologies, along with more sophisticated algorithms, have expanded the possibilities
for accurate and efficient 3D reconstruction. The integration of SfM with machine
learning techniques and semantic understanding also holds promise for more intelligent
and context-aware 3D scene reconstruction.

CODE EXAMPLE
This code is an example of how to use the stereo block matching algorithm to compute
the depth map of a stereo image pair.

First, the stereo images are loaded using the OpenCV library. Then, a StereoBM object
is created with specified parameters for the number of disparities and block size. The
algorithm is then applied to the left and right images using the compute method of the
StereoBM object, which returns the disparity map.

Next, the disparity map is converted to a depth map using a scaling factor and the
convertScaleAbs method of OpenCV. Finally, the depth map is displayed using the
imshow function and the image window is kept open until a key is pressed.

The StereoBM algorithm is a popular method for 3D computer vision tasks such as
depth estimation and object reconstruction. This code example demonstrates a basic
implementation of the algorithm using OpenCV, which can be further customized for
specific applications.

import numpy as np

import cv2

# Load the stereo images



left_image = cv2.imread('left.png')

right_image = cv2.imread('right.png')

# Stereo block matching algorithm

stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)

# Compute the disparity map

disparity_map = stereo.compute(left_image, right_image)

# Convert the disparity map to depth map

depth_map = cv2.convertScaleAbs(0.4 * disparity_map)

# Display the depth map

cv2.imshow('Depth Map', depth_map)

cv2.waitKey(0)

cv2.destroyAllWindows()


