
Lesson 4: Training Deep Neural Networks
Training Deep Neural Networks is an iterative process that involves multiple steps, such
as data preparation, network architecture selection, hyperparameter tuning, and
optimization algorithm selection.

The first step in training a deep neural network is to prepare the input data. This may
involve tasks such as cleaning the data, preprocessing it, and splitting it into training,
validation, and testing sets.

Next, the network architecture is selected based on the nature of the task at hand. The
architecture may involve different types of layers, such as convolutional, recurrent, and
fully connected layers, and the number of layers and their sizes are chosen based on
the complexity of the problem.

Once the network architecture is selected, the next step is to tune the hyperparameters
of the network. Hyperparameters include the learning rate, regularization techniques,
and batch size, among others. These hyperparameters can greatly affect the
performance of the network and need to be tuned carefully to ensure that the network is
able to learn from the data and generalize well to new inputs.

After the hyperparameters are tuned, the optimization algorithm is selected. Common
optimization algorithms used in deep neural networks include stochastic gradient
descent (SGD), Adam, and Adagrad, among others. The choice of optimization
algorithm can greatly impact the convergence speed and performance of the network.

During the training process, the network is fed with input data, and the output is
compared with the desired output to compute the loss. The optimizer algorithm is then
used to update the network parameters in order to minimize the loss. This process is
repeated over multiple iterations, or epochs, until the network converges to a
satisfactory solution.

Overall, training deep neural networks is a complex and iterative process that requires
careful selection of network architecture, hyperparameters, and optimization algorithms.
With careful tuning, deep neural networks can achieve state-of-the-art performance on
various tasks, making them a popular choice in many fields.



4.1 Regularization techniques (dropout, weight decay)
Regularization techniques are critical in deep learning to prevent overfitting, which is a
common problem where the model becomes too complex and fits the training data too
closely, leading to poor generalization to new data. Regularization techniques help to
address this issue by adding constraints to the optimization process.

Dropout is a widely used regularization technique that randomly drops out a subset of
neurons during training, forcing the remaining neurons to learn more robust and
generalizable features. This technique has been shown to be effective in reducing
overfitting in a variety of neural network architectures, including convolutional neural
networks and recurrent neural networks.

Weight decay, also known as L2 regularization, is another popular regularization
technique that adds a penalty term to the loss function to encourage the weights of the
network to be small. This helps to prevent overfitting by reducing the complexity of the
model and encouraging it to learn simpler representations of the data.

L1 regularization is a similar technique to weight decay, but it penalizes the absolute
value of the weights instead of their squared magnitude. This can lead to sparse weight
matrices, where some weights are set to zero, making the model more interpretable and
reducing overfitting.

Early stopping is another regularization technique that involves monitoring the validation
loss during training and stopping the training process when the validation loss starts to
increase. This prevents the model from overfitting to the training data and helps to find a
model that generalizes well to new data.

It's important to note that the choice of regularization technique depends on the specific
problem and dataset, and there is ongoing research to develop new and more effective
techniques.



4.2 Optimizers (SGD, Adam, Adagrad)
Optimizers play a crucial role in the training of deep neural networks by updating the
parameters of the network to minimize the loss function. They help the network learn
from the data and improve its predictions.

There are several optimizers commonly used in deep learning, each with its own
strengths and weaknesses.

Stochastic Gradient Descent (SGD) is the most basic optimizer and is often used as a
starting point for training deep neural networks. It works by computing the gradient of
the loss function with respect to the parameters of the network for a small batch of data
at a time. The parameters are then updated in the direction of the negative gradient,
scaled by a learning rate hyperparameter. However, SGD can be slow to converge,
especially for large datasets and complex models.

Adam is a popular optimizer that combines the ideas of momentum and adaptive
learning rates. It uses a moving average of the gradients to adaptively scale the learning
rate for each parameter. This helps the optimizer to converge faster and more reliably
than SGD. Additionally, Adam has been shown to perform well in a wide range of
applications, including computer vision and natural language processing.

Adagrad is another optimizer that adapts the learning rate for each parameter. However,
instead of using a moving average of the gradients like Adam, Adagrad uses the sum of
the squared gradients to compute an adaptive learning rate. This makes Adagrad
well-suited for sparse data and non-convex optimization problems. However, Adagrad
can sometimes become stuck in narrow valleys of the loss function.



Other popular optimizers include Adadelta, RMSprop, and Nadam. Adadelta and
RMSprop are both adaptive learning rate optimizers that build on the ideas of Adagrad.
Nadam is a combination of Adam and SGD with Nesterov momentum. Each optimizer
has its own advantages and disadvantages, and the choice of optimizer should be
based on the specific task and the properties of the data being used.

In addition to choosing the optimizer, the learning rate, batch size, and number of
epochs are also important hyperparameters to tune during the training process. By
selecting the right optimizer and tuning the hyperparameters appropriately, it is possible
to achieve high performance on a wide range of deep learning tasks.

4.3 Learning rate schedules
Learning rate schedules are an important aspect of training deep neural networks.
Learning rate is a hyperparameter that determines the step size at each iteration while
moving toward a minimum of the loss function during training. It is a critical parameter
that influences the performance and training time of deep neural networks.

A high learning rate can lead to divergent behavior, and the model may fail to converge
or overshoot the optimal solution. On the other hand, a low learning rate can cause slow
convergence and result in a longer training time.

One way to set the learning rate is to use a fixed value throughout the training process.
However, a fixed learning rate may not always be optimal, as the optimal learning rate
can change during training as the model approaches convergence. Therefore, learning
rate schedules have been developed to adaptively change the learning rate during
training.

There are several types of learning rate schedules, including step decay, exponential
decay, and polynomial decay. Step decay involves decreasing the learning rate by a
factor after a fixed number of epochs. Exponential decay involves reducing the learning
rate exponentially over time, while polynomial decay reduces the learning rate
according to a polynomial function.

Another approach to setting the learning rate is to use adaptive learning rate methods,
such as AdaGrad, RMSProp, and Adam. These methods dynamically adjust the
learning rate based on the gradient of the loss function, allowing for faster convergence
and better performance.



AdaGrad adapts the learning rate for each parameter based on its historical gradient. It
assigns a smaller learning rate to the parameters that have larger gradient values and a
higher learning rate to the parameters that have smaller gradient values. This technique
is well-suited for sparse data and features with different scales.

RMSProp is a technique that also adapts the learning rate for each parameter.
However, instead of using the historical gradient of the parameter, it uses the moving
average of the squared gradient of the parameter to compute the adaptive learning rate.
It helps to reduce the influence of noisy gradients in the parameter update.

Adam is a popular optimizer that combines the advantages of both AdaGrad and
RMSProp. It uses a moving average of the gradient and the squared gradient of the
parameter to compute the adaptive learning rate. Additionally, it incorporates
momentum to speed up the convergence process and stabilize the updates.

Choosing the right learning rate schedule and optimizer is essential for training deep
neural networks effectively. A well-chosen learning rate schedule can prevent the model
from getting stuck in local minima and accelerate convergence. A suitable optimizer can
improve performance and reduce training time, leading to better and faster results.



4.4 CODE EXAMPLE

Regularization techniques (dropout, weight decay):
In neural network models, regularization techniques are used to prevent overfitting,
which occurs when a model becomes too complex and starts to fit the noise in the data
rather than the underlying patterns. Dropout and weight decay are two common
regularization techniques.

Example code for implementing dropout in PyTorch:

import torch

import torch.nn as nn

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.fc1 = nn.Linear(10, 50)

self.dropout = nn.Dropout(p=0.5)

self.fc2 = nn.Linear(50, 1)

def forward(self, x):

x = self.fc1(x)

x = nn.functional.relu(x)

x = self.dropout(x)

x = self.fc2(x)

return x

Explanation: In this example, we define a neural network model with a fully connected
layer (fc1) that takes in an input of size 10 and outputs a hidden layer of size 50. We
then apply a dropout layer with a dropout probability of 0.5, which randomly sets half of
the activations in the hidden layer to zero during each forward pass. Finally, we have
another fully connected layer (fc2) that takes in the output of the dropout layer and
produces a single output.



Optimizers (SGD, Adam, Adagrad):
In order to update the weights of a neural network during training, we need to use an
optimizer that minimizes the loss function. Stochastic gradient descent (SGD), Adam,
and Adagrad are three common optimizers used in deep learning.

Example code for implementing Adam optimizer in TensorFlow:

import tensorflow as tf

# Define the model

model = tf.keras.Sequential([

tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),

tf.keras.layers.Dense(10, activation='softmax')

])

# Compile the model with Adam optimizer

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

Explanation: In this example, we define a neural network model with two fully
connected layers, where the first layer has 64 units and uses the ReLU activation
function. We then compile the model with the Adam optimizer, which is a popular
optimizer that adapts the learning rate based on the momentum and the root mean
square of the gradients. We also specify the loss function as categorical crossentropy
and the evaluation metric as accuracy.



Learning rate schedules:
The learning rate is a hyperparameter that controls how quickly the model learns from
the data. Learning rate schedules are used to adjust the learning rate over time to
improve convergence.

Example code for implementing a learning rate schedule in TensorFlow:

import tensorflow as tf

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import LearningRateScheduler

# Load the MNIST dataset

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Normalize pixel values to be between 0 and 1

x_train = x_train / 255.0

x_test = x_test / 255.0

# Convert class vectors to binary class matrices

y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)

y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

# Define a function to create the model

def create_model():

model = Sequential()

model.add(Dense(512, activation='relu', input_shape=(784,)))

model.add(Dense(10, activation='softmax'))

return model

# Define a function to create the learning rate schedule

def lr_schedule(epoch):



lr = 0.1

if epoch > 10:

lr = 0.01

if epoch > 20:

lr = 0.001

return lr

# Create the model and compile it

model = create_model()

model.compile(loss='categorical_crossentropy', optimizer='sgd',

metrics=['accuracy'])

# Create the learning rate scheduler callback

lr_scheduler = LearningRateScheduler(lr_schedule)

# Train the model with the learning rate scheduler

model.fit(x_train, y_train, batch_size=128, epochs=30,

callbacks=[lr_scheduler], validation_data=(x_test, y_test))

Explanation: In this example, we define a function lr_schedule that takes the current
epoch as an argument and returns the learning rate for that epoch. The learning rate
starts at 0.1 and is reduced to 0.01 after 10 epochs and 0.001 after 20 epochs.

We then create a LearningRateScheduler callback and pass it to the fit method of the
model. This callback will be called at the beginning of each epoch and will set the
learning rate for that epoch based on the lr_schedule function.


