
Lesson 13: Text Summarization
Text summarization is the process of automatically generating a shorter version of a
longer text document while preserving its most important information and main ideas.
The goal of text summarization is to reduce the time and effort required to read and
comprehend a large amount of text, while still conveying the key points and main
message of the original document.

There are two main types of text summarization: extractive and abstractive. Extractive
summarization involves selecting the most important sentences or phrases from the
original text and combining them to form a summary. Abstractive summarization, on the
other hand, involves generating new sentences that capture the main ideas of the
original text, often using natural language processing techniques such as language
generation models.

Text summarization algorithms can be based on various methods, such as statistical
analysis, graph-based algorithms, and deep learning models. These algorithms analyze
the text and identify the most important information based on various factors, such as
sentence length, keyword frequency, and semantic similarity.

Text summarization has many practical applications, such as news summarization,
document summarization, and email summarization. It can help to quickly and efficiently
process and comprehend large volumes of text data, such as news articles or research
papers. However, the quality of the summarization heavily depends on the accuracy and
comprehensiveness of the original text and the capabilities of the summarization
algorithm used.



Extractive Summarization
Extractive summarization is a text summarization technique that involves selecting the
most important sentences or phrases from the original text to create a summary. This
technique doesn't modify or restructure the selected sentences, but rather takes them
directly from the original text.

To perform extractive summarization, the original text is first pre-processed by removing
unnecessary elements such as stop words and punctuation. Then, each sentence in the
pre-processed text is scored based on factors such as word frequency, sentence length,
and semantic similarity with other sentences. The top-scoring sentences are selected to
create a summary, and the number of sentences chosen depends on the desired length
of the summary.

Extractive summarization is advantageous because it preserves the exact wording and
structure of the original text, making it useful in legal or scientific contexts. Additionally,
this technique is relatively fast and easy to implement compared to other summarization
techniques.

However, extractive summarization has some limitations. It may not be able to capture
the full meaning or context of the original text, leading to a summary that is incomplete
or misleading. It also struggles with complex sentences or idiomatic expressions, which
can result in a summary that is difficult to comprehend.

EXAMPLE CODE

The code below shows an example implementation of TextRank, a popular graph-based
algorithm for extractive summarization. The textrank_summary function takes a text

and the desired number of summary sentences as input, tokenizes the text into
sentences using the sent_tokenize function from the nltk library, and creates a graph
of the sentences using the networkx library. The get_word_embeddings function
computes the average word embedding for each sentence using pre-trained word
embeddings. The similarity between sentences is calculated using cosine similarity

between their word embeddings, and the nx.pagerank function is used to compute the
TextRank scores for each sentence. Finally, the top-scoring sentences are selected and

returned as the summary.



import networkx as nx

import nltk

nltk.download('punkt')

from nltk.tokenize import sent_tokenize, word_tokenize

from sklearn.metrics.pairwise import cosine_similarity

def textrank_summary(text, num_sentences):

# Tokenize the text into sentences

sentences = sent_tokenize(text)

# Create a graph of the sentences

graph = nx.Graph()

for i, sentence_i in enumerate(sentences):

for j, sentence_j in enumerate(sentences):

if i != j:

similarity =

cosine_similarity(get_word_embeddings(sentence_i),

get_word_embeddings(sentence_j))[0][1]

graph.add_edge(i, j, weight=similarity)

# Compute the TextRank scores for each sentence

scores = nx.pagerank(graph)

# Select the top-scoring sentences and return them as the summary

summary = []

for index, score in sorted(scores.items(), key=lambda x: x[1],

reverse=True)[:num_sentences]:

summary.append(sentences[index])

return ' '.join(summary)



def get_word_embeddings(text):

# Tokenize the text into words

words = word_tokenize(text)

# Compute the average word embedding for the text

word_embeddings = []

for word in words:

try:

word_embeddings.append(embeddings[word])

except KeyError:

continue

if len(word_embeddings) == 0:

return np.zeros(embeddings.vector_size)

else:

return np.mean(word_embeddings, axis=0)

# Example usage

text = "Deep learning is a subset of machine learning that focuses on

training artificial neural networks to perform tasks such as image

recognition and natural language processing. In recent years, deep

learning has become increasingly popular due to its ability to

achieve state-of-the-art performance on a wide range of tasks.

However, training deep neural networks can be computationally

expensive and requires large amounts of data. In this paper, we

review the history and development of deep learning, discuss its

applications in various fields, and highlight some of the challenges

and future directions of the field."

num_sentences = 2

summary = textrank_summary(text, num_sentences)

print(summary)



Abstractive Summarization
Abstractive summarization is a type of text summarization that aims to generate a
summary that captures the essence of the original text, while still conveying the main
ideas and important information. It differs from extractive summarization, which selects
sentences directly from the original text without any modification, by using natural
language processing techniques to generate new sentences that convey the meaning of
the original text.

To perform abstractive summarization, the original text is pre-processed to remove stop
words, punctuation, and other non-essential information. The pre-processed text is then
transformed into a numerical representation, such as a vector or matrix, which can be
used as input for the summarization algorithm. The summarization algorithm then
generates new sentences that capture the main ideas of the original text, using natural
language processing techniques such as language generation models.

One of the key advantages of abstractive summarization is its ability to capture the
underlying meaning and context of the original text, making the summary more
informative and readable. This technique is also more flexible than extractive
summarization, as it can handle complex sentences and idiomatic expressions.
Abstractive summarization is useful in various applications, such as news
summarization, video summarization, and conversational summarization.

However,
abstractive
summarization
can be more
challenging to
implement and
requires more
training data than
extractive
summarization.
The generated
sentences may
sometimes
contain
grammatical

errors or be less coherent compared to the original text. Evaluating the quality of the
generated summary is also more challenging than in extractive summarization, as it
involves assessing the coherence, relevance, and readability of the summary.



To address some of these challenges, ongoing research is focused on improving the
accuracy and efficiency of abstractive summarization techniques, such as developing
better language models and optimizing the summarization algorithm. Additionally, hybrid
approaches that combine both extractive and abstractive summarization techniques are
being explored to improve the quality and efficiency of summarization.

EXAMPLE CODE

This code is a basic implementation of a sequence-to-sequence model for abstractive
text summarization using LSTM neural networks. It loads and preprocesses data, builds
the model using Keras, trains the model, and then generates a summary for a given
input text. The model uses two input sequences, the original text and the current

summary, to predict the next summary word. The summary is generated word-by-word
until the maximum summary length is reached.

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input, LSTM, Dense, Embedding,

Masking

from tensorflow.keras.optimizers import RMSprop

# Define hyperparameters

max_text_length = 200

max_summary_length = 50

vocab_size = 10000

embedding_size = 100

hidden_size = 300

batch_size = 64

epochs = 50



# Load data

train_data = load_data('train.csv')

test_data = load_data('test.csv')

# Tokenize text and summary

text_tokenizer = Tokenizer(num_words=vocab_size, oov_token='<OOV>')

text_tokenizer.fit_on_texts(train_data['text'])

text_sequences =

text_tokenizer.texts_to_sequences(train_data['text'])

text_sequences_padded = pad_sequences(text_sequences,

maxlen=max_text_length, padding='post')

summary_tokenizer = Tokenizer(num_words=vocab_size,

oov_token='<OOV>')

summary_tokenizer.fit_on_texts(train_data['summary'])

summary_sequences =

summary_tokenizer.texts_to_sequences(train_data['summary'])

summary_sequences_padded = pad_sequences(summary_sequences,

maxlen=max_summary_length, padding='post')

# Build model

text_input = Input(shape=(max_text_length,), dtype='int32')

embedded_text = Embedding(vocab_size, embedding_size,

input_length=max_text_length)(text_input)

masked_text = Masking(mask_value=0.)(embedded_text)

encoder = LSTM(hidden_size)(masked_text)

summary_input = Input(shape=(max_summary_length,), dtype='int32')

embedded_summary = Embedding(vocab_size, embedding_size,

input_length=max_summary_length)(summary_input)

masked_summary = Masking(mask_value=0.)(embedded_summary)

decoder = LSTM(hidden_size, return_sequences=True)(masked_summary,

initial_state=[encoder, encoder])



output = Dense(vocab_size, activation='softmax')(decoder)

model = Model([text_input, summary_input], output)

model.compile(loss='categorical_crossentropy',

optimizer=RMSprop(learning_rate=0.001), metrics=['accuracy'])

# Train model

history = model.fit([text_sequences_padded,

summary_sequences_padded], summary_sequences_padded,

batch_size=batch_size, epochs=epochs,

validation_split=0.2)

# Generate summary

def generate_summary(text):

text_sequence = text_tokenizer.texts_to_sequences([text])

text_sequence_padded = pad_sequences(text_sequence,

maxlen=max_text_length, padding='post')

summary_sequence = np.zeros((1, max_summary_length))

for i in range(max_summary_length):

prediction = model.predict([text_sequence_padded,

summary_sequence])[0]

summary_sequence[0, i] = np.argmax(prediction[i])

summary =

summary_tokenizer.sequences_to_texts([summary_sequence[0]])[0]

return summary



Evaluation Metrics for Text Summarization
Evaluation metrics for text summarization are used to measure the quality and
effectiveness of generated summaries compared to the original text. The choice of
evaluation metrics depends on the type of summarization, such as extractive or
abstractive, and the specific application.

For extractive summarization, commonly used evaluation metrics include precision,
recall, and F1 score. These metrics are based on comparing the extracted sentences
from the original text to the reference summary, which is a human-generated summary.
Precision measures the proportion of correctly extracted sentences from the reference
summary, while recall measures the proportion of all relevant sentences from the
original text that were extracted. The F1 score is the harmonic mean of precision and
recall, which provides a single metric to evaluate the performance of the summarization
algorithm.

For abstractive summarization, evaluation metrics such as ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) and BLEU (Bilingual Evaluation Understudy) are
commonly used. ROUGE measures the overlap between the generated summary and
the reference summary, using measures such as ROUGE-1 (unigram overlap) and
ROUGE-L (longest common subsequence). BLEU measures the similarity between the
generated summary and the reference summary based on n-gram matches, and has
been widely used in machine translation evaluation.

Other evaluation metrics for text summarization include coherence, readability, and
fluency. Coherence measures the logical flow and organization of the summary, while
readability measures the ease of comprehension for the target audience. Fluency
measures the grammatical correctness and naturalness of the generated summary.

Overall, evaluation metrics for text summarization are important for assessing the
performance of summarization algorithms and identifying areas for improvement.
However, no single metric can fully capture the quality and effectiveness of a summary,
and a combination of metrics should be used to provide a more comprehensive
evaluation.


