
Lesson 13: Support Vector Machines (SVMs)
Support Vector Machines (SVMs) are a type of machine learning algorithm that has
gained popularity due to its effectiveness in solving both linear and non-linear
classification and regression problems. SVMs work by finding a hyperplane in a
high-dimensional space that separates the data into different classes or predicts a
continuous output variable.

One of the main strengths of SVMs is their ability to handle non-linear problems through
the use of kernel functions. Kernel functions allow SVMs to implicitly map the input data
to a higher-dimensional space where the classes are more separable. SVMs can use
different types of kernels such as linear, polynomial, radial basis function (RBF), and
sigmoid, depending on the problem at hand.

SVMs also have the advantage of being able to handle high-dimensional feature
spaces, which is often a requirement in many machine learning applications. In
high-dimensional spaces, SVMs are able to find a hyperplane that best separates the
data by maximizing the margin between the two classes. The margin is defined as the
distance between the hyperplane and the closest points from both classes, and it
represents the level of confidence in the classification or regression task.

In addition, SVMs have a regularization parameter that helps to prevent overfitting by
controlling the complexity of the model. This parameter allows SVMs to generalize well
to new data and perform well on unseen test data.

Overall, SVMs are a powerful and versatile class of machine learning algorithms that
can handle a wide range of classification and regression problems. Their ability to
handle non-linear problems and high-dimensional spaces makes them particularly
effective in many real-world applications, such as image and text classification, anomaly
detection, and bioinformatics.

Linear SVMs:
Linear SVMs are a type of SVM that are used to solve linear classification and
regression problems. In linear classification, the goal is to find the best hyperplane that
separates the data into two classes. The hyperplane is a line that divides the data into
two regions, with each region representing one of the two classes. Linear regression, on



the other hand, involves predicting a continuous output variable given a set of input
variables.

The key idea behind linear SVMs is to find the hyperplane that maximizes the margin
between the two classes. The margin is defined as the distance between the
hyperplane and the closest points from both classes. The points that are closest to the
hyperplane are called support vectors, and they play a crucial role in determining the
optimal hyperplane.

The optimal hyperplane is chosen so as to maximize the margin between the two
classes, which provides the best separation between the data. This margin-based
approach helps to improve the generalization performance of the classifier by reducing
overfitting to the training data.

In linear SVMs, the optimization problem is to find the optimal hyperplane that
maximizes the margin while correctly classifying all the training samples.
Mathematically, this can be expressed as a constrained optimization problem:



minimize (1/2) ||w||^2

subject to yi (w^T xi + b) >= 1, for i = 1, 2, ..., n

where w is the weight vector, b is the bias term, xi is the i-th training sample, yi is the
corresponding label, and n is the number of training samples. The optimization problem
aims to minimize the norm of the weight vector w subject to the constraint that all
training samples are correctly classified.

Solving this optimization problem can be done using various optimization algorithms,
such as gradient descent or the Lagrange dual formulation. Once the optimization
problem is solved, the weight vector w and bias term b can be used to classify new
samples based on which side of the hyperplane they fall.

Linear SVMs are a powerful and effective technique for solving linear classification and
regression problems. They offer a margin-based approach to find the optimal
hyperplane that maximizes the separation between the two classes, and they can be
easily extended to handle non-linear problems using kernel functions.

Non-linear SVMs:
Non-linear SVMs are used when the classification or regression problem cannot be
separated by a linear hyperplane. In such cases, SVMs use a non-linear transformation
of the data to map it into a higher-dimensional feature space, where a linear hyperplane
can be used to separate the data. The non-linear transformation function ϕ maps the
original input data into a higher-dimensional feature space, allowing the SVM to find a
hyperplane that can better separate the data into different classes. However, computing
the transformed feature space can be computationally expensive, especially when the
number of features is large.



To overcome this computational challenge, the kernel trick is used to perform the
non-linear transformation without explicitly computing the feature space. The kernel
function K(x, y) is defined as the inner product of the transformed vectors in the feature
space, without actually computing the transformation. The kernel function acts as a
similarity measure between two samples in the input space, allowing calculations to be
performed in the transformed space without actually computing the transformation.

The objective function for the non-linear SVM can be expressed as:

minimize (1/2)||w||^2 + CΣi=1n ξi

subject to yi(w^Tϕ(xi)+b) >= 1 - ξi, ξi >= 0 for i=1,...,n

This constrained optimization problem is similar to the linear SVM, but the kernel
function is used to compute the inner product of the transformed vectors in the feature
space, without actually computing the transformation. The objective is to find the
hyperplane that maximizes the margin between the two classes while minimizing the
classification error. The regularization parameter C controls the trade-off between the
margin and the classification error, and the slack variables ξi are used to allow some
misclassifications, with a penalty determined by the regularization parameter C.

Some commonly used kernel functions include the polynomial kernel, the radial basis
function (RBF) kernel, and the sigmoid kernel. The polynomial kernel computes the
inner product of the input vectors in a polynomial feature space of degree d, while the



RBF kernel computes the inner product in a Gaussian radial basis function. The sigmoid
kernel uses a sigmoid function to transform the input data.

In practice, the choice of kernel function and hyperparameters can significantly impact
the performance of the SVM. Therefore, it is essential to carefully tune these
parameters to achieve the best performance on the test data. Non-linear SVMs are a
powerful and versatile machine learning algorithm that can handle a wide range of
classification and regression problems that cannot be solved using linear models. The
kernel trick allows SVMs to perform non-linear transformations without explicitly
computing the transformed feature space, making the method computationally efficient
and scalable to large datasets.

Parameter Tuning:
Parameter tuning is an important step in the training of SVMs. The performance of
SVMs can be highly sensitive to the choice of parameters, such as the regularization
parameter C, the kernel type, and the kernel parameters. Tuning these parameters
carefully is crucial to achieving the best possible performance.

One of the most popular techniques for parameter tuning is grid search. Grid search
involves defining a grid of parameter values and exhaustively searching over this grid to
find the combination of parameters that gives the best performance. While grid search is
a simple and straightforward technique, it can be computationally expensive, especially
when the number of parameters is large.

An alternative to grid search is random search, which randomly samples from the
parameter space. Random search is a more efficient technique than grid search since it
can explore the parameter space more efficiently, without requiring an exhaustive
search. Random search is also less likely to get stuck in local optima than grid search.

Another advanced technique for parameter tuning is Bayesian optimization. Bayesian
optimization uses a probabilistic model to guide the search process. The model
estimates the probability of improvement for each set of parameters, and the search
process is guided towards the most promising areas of the parameter space. Bayesian
optimization is especially useful when the objective function is expensive to evaluate, as
it can efficiently explore the parameter space with a limited number of evaluations.

In addition to these techniques, cross-validation is an important step in parameter
tuning. Cross-validation involves splitting the dataset into training and validation sets



and evaluating the performance of the model on the validation set. Cross-validation
helps to prevent overfitting to the training data and provides an estimate of the
generalization performance of the model.

In conclusion, parameter tuning is a crucial step in the training of SVMs, and the choice
of technique depends on the specific problem and available resources. Careful
parameter tuning can significantly improve the performance of SVMs, making them a
powerful and effective tool for solving classification and regression problems.

Feature Selection:
Feature selection is a crucial step in machine learning that involves selecting the most
informative features for a given task. SVMs can be used for feature selection by
examining the weights of the learned model. Feature selection is particularly important
when dealing with high-dimensional data, where the number of features can be much
larger than the number of samples.

One popular technique for feature selection is recursive feature elimination (RFE). RFE
is an iterative method that starts with all the features and removes the least important
features one by one until the desired number of features is reached. The importance of
each feature is estimated by examining the weights of the SVM model. The RFE
algorithm works as follows:

1. Train an SVM model on the entire dataset.
2. Rank the features based on their importance, using the weights of the SVM

model.
3. Remove the feature with the lowest rank and retrain the SVM model on the

remaining features.
4. Repeat steps 2-3 until the desired number of features is reached.

RFE can be computationally expensive, especially when the number of features is
large. To reduce the computational cost, a variant of RFE called Recursive Feature
Addition (RFA) can be used. RFA starts with an empty feature set and adds one feature
at a time, based on their importance as estimated by the SVM model.

Another popular technique for feature selection is the Lasso regularization. Lasso is a
linear model with L1 regularization that encourages sparsity in the feature weights. The
Lasso penalty shrinks some of the feature weights to zero, effectively removing those



features from the model. The Lasso regularization can be combined with SVMs to
perform feature selection.

In addition to these techniques, mutual information, correlation-based feature selection,
and principal component analysis (PCA) can also be used for feature selection. Mutual
information measures the dependence between two random variables, while
correlation-based feature selection measures the linear correlation between each
feature and the target variable. PCA is a dimensionality reduction technique that
projects the data onto a lower-dimensional subspace.

Overall, feature selection is a crucial step in machine learning that can significantly
improve the performance of SVMs. The choice of feature selection technique depends
on the specific problem and available resources, and it is important to carefully evaluate
the performance of the selected features on a separate validation dataset.

Code Example:

In this code, we first load the Iris dataset using the load_iris function from scikit-learn.
We then split the data into training and testing sets using the train_test_split function.

Next, we create a Linear SVM classifier using the LinearSVC class. We train the
classifier on the training data using the fit method, and make predictions on the testing
data using the predict method.

Finally, we compute the accuracy of the classifier on the testing data using the
accuracy_score function from scikit-learn. The accuracy is printed to the console using
the print function.

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.svm import LinearSVC

from sklearn.metrics import accuracy_score



# Load the Iris dataset

iris = load_iris()

# Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3,

random_state=42)

# Create a Linear SVM classifier

clf = LinearSVC()

# Train the classifier on the training data

clf.fit(X_train, y_train)

# Make predictions on the testing data

y_pred = clf.predict(X_test)

# Compute the accuracy of the classifier

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)


