
Lesson 12: Ensemble Methods
Ensemble methods are a powerful tool in machine learning, which can increase the
accuracy of predictions by combining multiple models. They are widely used in various
fields, including finance, healthcare, and e-commerce. In this chapter, we will discuss
three popular ensemble methods: bagging, boosting, and random forests.

Bagging (Bootstrap Aggregating) is an ensemble method that involves creating multiple
models on different subsets of the training data and then combining their predictions. It
is particularly useful for unstable models that are sensitive to changes in the data, such
as decision trees. Bagging can improve the performance of a single model by reducing
variance and overfitting.

Boosting, on the other hand, is an ensemble method that focuses on improving the
accuracy of a single model by iteratively training weak models on the residuals of the
previous model. Boosting can reduce bias and improve the performance of a model on
complex tasks. It is commonly used in the context of decision trees, where it is known
as AdaBoost.

Random forests are a type of ensemble method that combine the ideas of bagging and
decision trees. They are made up of multiple decision trees that are trained on different
subsets of the data and feature subsets. Random forests can improve the performance
of decision trees by reducing variance and overfitting. They are widely used in various
applications, such as predicting customer churn and identifying fraudulent transactions.

Bagging
Bagging (bootstrap aggregating) is an ensemble method that combines multiple models
to make better predictions. The basic concept of bagging involves training multiple
models on different subsets of the training data, with replacement. The predictions of
these models are then combined through averaging or voting to make a final prediction.
This approach helps in reducing variance and overfitting, making it an effective
technique for high-variance models such as decision trees.

Bagging can be implemented in practice by first randomly sampling subsets of the
training data with replacement to create multiple subsets of the training data. Then, a
model is trained on each subset of the data, and the predictions of these models are
combined to make a final prediction. This process can be repeated multiple times, with



each iteration resulting in a different set of models being trained on different subsets of
the data.

One of the main advantages of bagging is its ability to reduce the impact of outliers and
noise in the data. By training multiple models on different subsets of the data, bagging
can better capture the underlying patterns and relationships in the data, while avoiding
overfitting. Bagging is particularly useful in scenarios where there is high variance in the
data, and there is a risk of overfitting.

However, one of the main drawbacks of bagging is its increased computational cost.
Training multiple models on different subsets of the data can be time-consuming and
resource-intensive, especially for large datasets. Additionally, the predictions of the
individual models can be less interpretable, as they may not provide clear insights into
the underlying patterns and relationships in the data.

Bagging has a wide range of real-world applications, such as predicting the stock prices
of a company based on historical data, or predicting customer churn in a
telecommunications company. In these applications, bagging can be used to create
multiple models that capture different aspects of the data, resulting in more accurate
and reliable predictions.

Boosting
Boosting is another popular ensemble method that combines multiple weak learners to
create a strong model. The basic idea behind boosting is to sequentially train models
that focus on the data points that previous models have misclassified. By doing so, the
algorithm gradually improves its performance over time.

One of the most common boosting algorithms is AdaBoost (Adaptive Boosting).
AdaBoost assigns a weight to each data point in the training set, and the weights are
adjusted after each iteration to give more importance to misclassified points. In each
iteration, a weak learner is trained on the weighted data, and the algorithm reweights
the data for the next iteration.

Boosting is particularly useful when dealing with complex data sets that have non-linear
relationships. It has been successfully applied in a variety of domains, such as natural
language processing, computer vision, and finance.



One drawback of boosting is that it can be sensitive to noisy data and outliers.
Additionally, because boosting is an iterative process, it can be computationally
expensive and time-consuming to train. Nevertheless, with appropriate tuning and
parameter selection, boosting can be a powerful tool for improving predictive accuracy
in machine learning.

Random Forests
Random forests are a popular extension of decision trees in which multiple decision
trees are trained on random subsets of the training data and the features. The final
prediction is made by aggregating the predictions of all the individual trees. The main
advantage of random forests is that they tend to have better accuracy and are less
prone to overfitting than individual decision trees.

In random forests, each tree is grown using a random subset of the training data and a
random subset of the features. This randomization reduces the correlation between the
trees and helps to capture different aspects of the data. During training, the algorithm
also uses a technique called "bagging" to further reduce the variance of the final model.

Random forests are widely used in various applications such as finance, healthcare,
and marketing. For example, they can be used to predict customer churn or detect



fraudulent transactions. They are also commonly used in computer vision and natural
language processing tasks.

Overall, random forests are a powerful tool for building high-performance models and
are widely used in practice due to their flexibility and ease of use.



EXAMPLE CODE

The following code demonstrates how to implement three popular ensemble methods -
bagging, AdaBoost, and random forests - using the Scikit-learn library in Python.

Ensemble methods are powerful techniques that can improve the accuracy of machine
learning models by combining the predictions of multiple models. In this code, we will
show how to create a bagging classifier, an AdaBoost classifier, and a random forest

classifier, and compare their performance on a classification task. The code provides an
easy-to-follow implementation for anyone looking to apply ensemble methods in their

machine learning projects.

from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier,

RandomForestClassifier

from sklearn.tree import DecisionTreeClassifier

# Bagging classifier

bagging = BaggingClassifier(base_estimator=DecisionTreeClassifier(),

n_estimators=10)

# AdaBoost classifier

adaboost =

AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

n_estimators=10, learning_rate=1)

# Random Forest classifier

random_forest = RandomForestClassifier(n_estimators=10,

max_features='sqrt')


