
Lesson 11: Model Selection and Evaluation

Model selection and evaluation are crucial steps in the machine learning workflow,
which are essential for creating accurate and robust models. Once data has been
collected and preprocessed, selecting an appropriate model is crucial for obtaining
accurate predictions on new data.

Introduction to Model Selection and Evaluation
Model selection involves choosing the best algorithm and hyperparameters for the given
task, and evaluating the model's performance on new, unseen data. Cross-validation is
a common technique used for model selection, which involves dividing the data into
several subsets and training the model on a subset while testing on the remaining data.

To evaluate the performance of a model, various metrics such as accuracy, precision,
recall, and F1 score are commonly used. These metrics measure the model's ability to
make correct predictions and avoid making false predictions.

Hyperparameter tuning is an advanced topic in model selection, which involves
selecting the best combination of hyperparameters for a given algorithm.
Hyperparameters are parameters that cannot be learned from the data and must be set
manually. Choosing the optimal hyperparameters can significantly improve the model's
performance.

The bias-variance tradeoff is another important concept that affects the performance
of machine learning models. A model with high bias tends to underfit the data and
cannot capture the underlying patterns in the data, while a model with high variance
tends to overfit the data and cannot generalize well to new, unseen data. Finding the
right balance between bias and variance is crucial for creating accurate and robust
models.

Cross-Validation
Cross-validation is a commonly used technique in machine learning for model selection
and evaluation. The basic idea behind cross-validation is to divide the dataset into



multiple subsets, or "folds," where each fold is used for testing the model, while the
remaining folds are used for training.

There are several types of cross-validation, including k-fold cross-validation and
leave-one-out cross-validation. In k-fold cross-validation, the dataset is divided into k
equal-sized subsets, and the model is trained on k-1 subsets and tested on the
remaining subset. This process is repeated k times, with each subset being used for
testing exactly once. The results are then averaged to obtain a more robust estimate of
the model's performance.

Metrics such as accuracy, precision, recall, and F1 score are commonly used to
evaluate the performance of the model. Accuracy measures the overall correctness of
the predictions, while precision and recall measure the model's ability to correctly
identify positive cases and avoid false positives or negatives. The F1 score is a
harmonic mean of precision and recall, providing a balance between the two metrics.

Cross-validation helps to address the issue of overfitting, which occurs when a model is
trained too well on the training data and performs poorly on new, unseen data. By
evaluating the model on multiple subsets of the data, cross-validation provides a more
reliable estimate of the model's performance on new data.

K-Fold Cross-Validation
K-Fold Cross-Validation is a commonly used technique in machine learning for model
selection and evaluation. It involves dividing the dataset into K equally sized folds,
where K is a user-specified parameter. The model is then trained K times, each time
using K-1 folds for training and the remaining fold for testing.

This process is repeated K times, with each of the K folds being used exactly once for
testing. The performance metrics are then averaged over the K runs to obtain an
estimate of the model's performance on new, unseen data.

K-Fold Cross-Validation is a robust method for estimating the performance of a model,
as it reduces the variance of the evaluation metric compared to a single train-test split. It
also ensures that all data points are used for both training and testing at least once,
providing a more reliable estimate of the model's performance.

One common variation of K-Fold Cross-Validation is Stratified K-Fold Cross-Validation,
which ensures that the distribution of classes in each fold is similar to that of the overall



dataset. This is particularly useful for imbalanced datasets, where some classes may be
underrepresented in the data.

EXAMPLE CODE
This code performs K-fold cross-validation on a decision tree classifier using the
scikit-learn library in Python.

First, a toy dataset is created with 5 data points and their corresponding binary labels.

Next, a KFold object is initialized with a specified number of splits (in this case, 3). This
object is responsible for splitting the dataset into training and test sets for each fold of
cross-validation.

Then, a decision tree classifier is initialized using the DecisionTreeClassifier class from
scikit-learn.

The for loop then iterates through each fold of cross-validation, training the decision tree
classifier on the training data and evaluating its performance on the test data. The
accuracy score is calculated using the accuracy_score function from scikit-learn and
printed for each fold.

from sklearn.model_selection import KFold

from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

import numpy as np

# Load dataset

X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])

y = np.array([0, 0, 1, 1, 1])

# Define K-Fold Cross-Validation

kf = KFold(n_splits=3)



# Define model

clf = DecisionTreeClassifier()

# Train and test the model using K-Fold Cross-Validation

for train_index, test_index in kf.split(X):

X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

acc = accuracy_score(y_test, y_pred)

print("Accuracy:", acc)

Leave-One-Out Cross-Validation
Leave-One-Out Cross-Validation (LOOCV) is another technique for cross-validation that
is commonly used for small datasets. In LOOCV, the dataset is split into K subsets, with
K equal to the number of data points in the dataset. For each subset, the model is
trained on all the data points except for one, which is used as the validation set. This
process is repeated K times, with each data point being used once as the validation set.

LOOCV is a more computationally expensive technique compared to K-fold
cross-validation, since it requires training the model K times. However, it has the
advantage of using all the data for training at each iteration, which can lead to a more
accurate estimate of the model's performance.

The main disadvantage of LOOCV is that it can be sensitive to outliers, since each data
point is used as a validation set in one iteration of the training process. This can lead to
overfitting if the model is too complex and the dataset contains outliers.



Overall, LOOCV is a useful technique for evaluating the performance of machine
learning models on small datasets, but its computational cost and sensitivity to outliers
should be taken into consideration when choosing a cross-validation technique.

EXAMPLE CODE

This code performs leave-one-out cross-validation on a Decision Tree classifier using
the LeaveOneOut class from sklearn.model_selection. The goal is to evaluate the
accuracy of the model on a small dataset of 5 samples, where each sample has 2
features and is associated with a binary class label (0 or 1).



The code first loads the dataset into the X and y arrays. Then, it initializes the
LeaveOneOut object with loo = LeaveOneOut().

Next, the code defines a DecisionTreeClassifier object named clf that will be used to
train and test the model on each fold of the cross-validation.

The code then uses a for loop to iterate over each fold of the cross-validation. For each
fold, the training data is obtained by removing the current test sample from the original
data using train_index and test_index. The classifier is then trained on the training
data and tested on the test sample. The accuracy of the model on the test sample is
computed using the accuracy_score function from sklearn.metrics. The accuracy for
each fold is stored in the acc_list list.

Finally, the average accuracy across all the folds is computed using the np.mean
function, and printed to the console using print("Average accuracy:", avg_acc).

from sklearn.model_selection import LeaveOneOut

from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

import numpy as np

# Load dataset

X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])

y = np.array([0, 0, 1, 1, 1])

# Define Leave-One-Out Cross-Validation

loo = LeaveOneOut()

# Define model

clf = DecisionTreeClassifier()

# Train and test the model using Leave-One-Out Cross-Validation

acc_list = []



for train_index, test_index in loo.split(X):

X_train, X_test = X[train_index], X[test_index]

y_train, y_test = y[train_index], y[test_index]

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

acc = accuracy_score(y_test, y_pred)

acc_list.append(acc)

# Compute the average accuracy

avg_acc = np.mean(acc_list)

print("Average accuracy:", avg_acc)

Hyperparameter Tuning
Hyperparameter tuning is an important step in the machine learning workflow that
involves selecting the best combination of hyperparameters for a given algorithm.
Hyperparameters are parameters that are not learned during training, but are set by the
user before training begins. Examples of hyperparameters include learning rate, number
of hidden layers, number of nodes in each hidden layer, regularization strength, and
activation functions.

The goal of hyperparameter tuning is to find the combination of hyperparameters that
results in the best performance of the model on the validation set. This is important
because using the wrong hyperparameters can lead to overfitting or underfitting,
resulting in poor performance on new, unseen data.

There are several techniques for hyperparameter tuning, including grid search, random
search, and Bayesian optimization. Grid search involves defining a grid of
hyperparameter values and training the model with all possible combinations of
hyperparameters. Random search is similar to grid search, but instead of searching
over a grid of values, it randomly samples values from a predefined range of values.
Bayesian optimization is a more advanced technique that involves constructing a
probabilistic model of the objective function and using it to select the next set of
hyperparameters to evaluate.



It is important to note that hyperparameter tuning can be computationally expensive and
time-consuming, especially for large datasets and complex models. Therefore, it is
important to balance the amount of time spent on hyperparameter tuning with the
potential benefits of improved model performance.

Grid Search
Grid search is a popular technique for hyperparameter tuning in machine learning. It
involves defining a set of hyperparameters and their respective values, and then training
and evaluating the model with all possible combinations of these hyperparameters. The
combination of hyperparameters that yields the best performance on a validation set is
then chosen as the optimal set of hyperparameters for the model.

Grid search can be computationally expensive, especially when dealing with a large
number of hyperparameters or a large dataset. However, it is a simple and systematic
approach to hyperparameter tuning and can be easily implemented using machine
learning libraries such as scikit-learn.

The main advantage of grid search is that it exhaustively searches the entire
hyperparameter space and guarantees to find the optimal set of hyperparameters given
the search space. However, it may not always be feasible or efficient to search the
entire hyperparameter space, and other techniques such as randomized search or
Bayesian optimization may be more suitable.

In practice, it is important to carefully choose the hyperparameters to search over and to
set reasonable ranges for their values. It is also recommended to use a separate
validation set to evaluate the performance of each model configuration during grid
search, in order to avoid overfitting to the training set.

EXAMPLE CODE

This code is an example of using GridSearchCV to perform hyperparameter tuning for a
support vector machine (SVM) classifier on the Iris dataset.



First, the code imports the necessary modules, including GridSearchCV, SVC, and the
Iris dataset from scikit-learn.

Next, the code defines a dictionary of hyperparameters to search over using a grid
search. In this case, the hyperparameters include the regularization parameter C, the
kernel type ('linear', 'poly', 'rbf', or 'sigmoid'), and the kernel coefficient gamma.

After defining the hyperparameters, a SVM classifier is created. Then, the
GridSearchCV function is used to perform a 5-fold cross-validation grid search over the
hyperparameter space to find the best set of hyperparameters that maximizes the mean
cross-validation score.

Finally, the code prints out the best hyperparameters and the corresponding mean
cross-validation score. This information can be used to fine-tune the SVM classifier for
better performance on the Iris dataset.

from sklearn.model_selection import GridSearchCV

from sklearn.svm import SVC

from sklearn.datasets import load_iris

# Load the Iris dataset

iris = load_iris()

# Define the hyperparameters to search over

param_grid = {

'C': [0.1, 1, 10, 100],

'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],

'gamma': [0.1, 1, 10, 100]

}

# Create a SVM classifier

svm = SVC()

# Perform grid search to find the best hyperparameters



grid_search = GridSearchCV(estimator=svm, param_grid=param_grid,

cv=5)

grid_search.fit(iris.data, iris.target)

# Print the best hyperparameters and the corresponding mean

cross-validation score

print("Best hyperparameters: ", grid_search.best_params_)

print("Best mean cross-validation score: ", grid_search.best_score_)

Random Search
Random search is another common method for hyperparameter tuning in machine
learning. Rather than exhaustively searching over all possible combinations of
hyperparameters, random search selects random combinations of hyperparameters
within a specified range and evaluates the model's performance on a validation set. The
search process continues for a specified number of iterations or until a satisfactory
combination of hyperparameters is found.

The advantage of random search over grid search is that it is computationally less
expensive, as it only samples a subset of possible combinations. Additionally, it can be
more effective in cases where the effect of a hyperparameter on the model's
performance is uncertain, as it allows for a broader exploration of the hyperparameter
space.

However, the downside of random search is that it may require more iterations to find
the optimal hyperparameters compared to grid search. It also does not guarantee that
all possible combinations of hyperparameters will be evaluated, which can be a concern
if the hyperparameter space is particularly large.

Overall, random search is a useful method for hyperparameter tuning, particularly in
cases where the hyperparameter space is large and the effect of hyperparameters on
model performance is uncertain.



EXAMPLE CODE
from sklearn.model_selection import RandomizedSearchCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.datasets import load_breast_cancer

# Load the Breast Cancer dataset

breast_cancer = load_breast_cancer()

# Define the hyperparameters to search over

param_dist = {

'n_estimators': [50, 100, 150, 200],

'max_depth': [5, 10, 15, 20, None],

'min_samples_split': [2, 5, 10],

'min_samples_leaf': [1, 2, 4],

'bootstrap': [True, False]

}

# Create a Random Forest classifier

rfc = RandomForestClassifier()

# Perform random search to find the best hyperparameters

random_search = RandomizedSearchCV(estimator=rfc,

param_distributions=param_dist, cv=5, n_iter=50)

random_search.fit(breast_cancer.data, breast_cancer.target)

# Print the best hyperparameters and the corresponding mean

cross-validation score

print("Best hyperparameters: ", random_search.best_params_)

print("Best mean cross-validation score: ",

random_search.best_score_)




