
Lesson 10: Dimensionality Reduction
Dimensionality reduction is a type of unsupervised learning technique that is used to
reduce the number of features in a dataset while preserving as much information as
possible. This can be particularly useful when working with high-dimensional data, as it
can help to reduce noise and improve the efficiency of algorithms that work on the data.

There are two main types of dimensionality reduction techniques: feature selection and
feature extraction. Feature selection involves selecting a subset of the original features
that are most relevant to the task at hand, while feature extraction involves creating new
features that are a combination of the original features.

One of the most commonly used dimensionality reduction techniques is principal
component analysis (PCA), which involves projecting the data onto a lower-dimensional
space while preserving as much of the original variation as possible. PCA works by
identifying the principal components of the data, which are linear combinations of the
original features that capture the most variation in the data.

Another popular dimensionality reduction technique is t-distributed stochastic neighbor
embedding (t-SNE), which is particularly useful for visualizing high-dimensional data in
two or three dimensions. t-SNE works by first computing pairwise similarities between
the data points, and then optimizing a cost function that minimizes the difference
between the pairwise similarities in the high-dimensional space and the pairwise
similarities in the low-dimensional space.

While dimensionality reduction can be a powerful tool for improving the efficiency and
accuracy of machine learning algorithms, it is important to be aware of its limitations. In
particular, dimensionality reduction can lead to the loss of important information in the
data, and it can be difficult to interpret the meaning of the new features that are created.

Examples of real-world applications of dimensionality reduction include image and video
processing, text mining, and bioinformatics. In image and video processing,
dimensionality reduction can be used to extract important features from the data, such
as color, texture, and shape. In text mining, dimensionality reduction can be used to
extract the most important words or topics from a corpus of text, while in bioinformatics,
dimensionality reduction can be used to identify patterns in large datasets of genetic
data.

Principal Component Analysis
Principal Component Analysis (PCA) is a widely used dimensionality reduction
technique that aims to reduce the number of dimensions in a dataset while preserving
as much of the original information as possible. The main idea behind PCA is to find a
new set of variables, called principal components, that are linear combinations of the
original variables and capture the most variation in the data.

PCA works by first centering the data around its mean and then computing the
covariance matrix of the data. The covariance matrix contains information about the
relationships between the variables in the data, and it can be calculated using the
following formula:

PCA then finds the eigenvectors and eigenvalues of the covariance matrix. The
eigenvectors represent the principal components, and the corresponding eigenvalues
represent the amount of variation explained by each principal component. The principal
components can be calculated using the following formula:

PCA can be used for various purposes, such as data compression, visualization, and
noise reduction. In data compression, PCA can be used to reduce the dimensionality of
the data while retaining most of the information. In visualization, PCA can be used to
project high-dimensional data onto a lower-dimensional space for visualization
purposes. In noise reduction, PCA can be used to remove noise from the data by
filtering out the components with low eigenvalues.

One limitation of PCA is that it is a linear technique and may not be able to capture
nonlinear relationships in the data. In such cases, nonlinear dimensionality reduction
techniques, such as t-SNE, may be more appropriate. Nonetheless, PCA is a powerful
tool that can be used to extract meaningful insights from high-dimensional datasets.

t-SNE
t-SNE (t-Distributed Stochastic Neighbor Embedding) is a nonlinear dimensionality
reduction technique that is often used for visualizing high-dimensional data in a
low-dimensional space. It was first introduced by Laurens van der Maaten and Geoffrey
Hinton in 2008.

t-SNE works by minimizing the divergence between the distribution of pairwise
similarities in the high-dimensional space and the distribution of pairwise similarities in
the low-dimensional space. It does this by modeling the high-dimensional data points as
a probability distribution over the pairwise similarities, and then modeling the
low-dimensional data points as another probability distribution over the pairwise
similarities. The two probability distributions are then compared using the
Kullback-Leibler divergence, and the low-dimensional representation of the data is
iteratively adjusted until the divergence is minimized.

One of the advantages of t-SNE over other dimensionality reduction techniques is its
ability to preserve the local structure of the data. This makes it particularly useful for
visualizing clusters or groups of similar data points. However, t-SNE can be
computationally expensive and may require careful tuning of hyperparameters.

t-SNE has been used in various applications, such as visualizing gene expression data,
analyzing text data, and exploring high-dimensional images in computer vision. It has
also been used in anomaly detection and clustering.

EXAMPLE CODE

In this example, we load the digits dataset and perform PCA and t-SNE on it. We first
perform PCA with two components and visualize the result using a scatter plot. Then,
we perform t-SNE with two components and visualize the result using another scatter

plot. The colors of the points correspond to the digit labels in the dataset.

from sklearn.datasets import load_digits

from sklearn.decomposition import PCA

from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

Load the dataset

digits = load_digits()

Perform PCA with two components

pca = PCA(n_components=2)

pca_result = pca.fit_transform(digits.data)

Visualize the PCA result

plt.scatter(pca_result[:, 0], pca_result[:, 1], c=digits.target)

plt.title('PCA Result')

plt.show()

Perform t-SNE with two components

tsne = TSNE(n_components=2)

tsne_result = tsne.fit_transform(digits.data)

Visualize the t-SNE result

plt.scatter(tsne_result[:, 0], tsne_result[:, 1], c=digits.target)

plt.title('t-SNE Result')

plt.show()

